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ABSTRACT OF THE DISSERTATION

Computational Techniques to Enable Visualizing

Shapes of Objects of Extra Spatial Dimensions

By

Donald Vaughn Black, II

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2010

Assistant Professor Stephen Jenks, Chair

Envisioning extra dimensions beyond the three of common experience is a daunting

challenge for three dimensional observers. Intuition relies on experience gained in a

three dimensional environment. Gaining experience with virtual four dimensional

objects and virtual three manifolds in four-space on a personal computer may

provide the basis for an intuitive grasp of four dimensions.

In order to enable such a capability for ourselves, it is first necessary to devise and

implement a computationally tractable method to visualize, explore, and

manipulate objects of dimension beyond three on the personal computer.

A technology is described in this dissertation to convert a representation of higher

dimensional models into a format that may be displayed in realtime on graphics

cards available on many off-the-shelf personal computers. As a result, an

opportunity has been created to experience the shape of four dimensional objects on

the desktop computer.

The ultimate goal has been to provide the user a tangible and memorable

experience with mathematical models of four dimensional objects such that the user

can see the model from any user selected vantage point.

xi



By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can

be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced

view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat

hyperplane cutting tool to slice the model at an arbitrary orientation and position to

extract or “pluck” an embedded 3D slice or “aspect” from the embedding four-space.

This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer

using three multiple POV viewports, and optionally exported to a third party CAD

viewer for further manipulation.

Plucking and Manipulating the Aspect provides a tangible experience for the

end-user in the same manner as any 3D Computer Aided Design viewing and

manipulation tool does for the engineer or a 3D video game provides for the nascent

student.
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Chapter 1

Introduction

“The symmetries of the subatomic realm are but the

remnants of the symmetry of higher-dimensional space.”

“...the fundamental laws of physics appear simpler in

higher dimensions...”

- Michio Kaku, PhD[3]

In order to understand complex, multi-variate simulations of phenomena, it has

proven to be useful to be able to observe the shape, symmetries and asymmetries of

higher dimensional mathematical models which emerge from these studies. This

capability allows the observer insights into the nature of complex phenomena such

as: viewing relativistic spacetime interactions; preventing collision in the design of a

robotic arm; exploring intersecting brane models in physics; and discovering

unexpected elegant symmetries in physical laws.

Visualizing extra dimensions and models of higher dimensional objects in extra

dimensions presents a number of thorny problems. Among these problems is the

representation of the dimensionality beyond the three with which we are familiar

such that the observer can decode the spatial relationships among the various

components of the model. A second challenge is the potential complexity of the

multi-dimensional data structure as well as the computational complexity of the

1



visualization processes.

The intent of this research has been to develop a simple yet computationally

tractable data storage and visual representation strategy for the display of spatial

models in greater than three dimensions that is both natural and familiar for the

sophisticated user. The success of this research will be demonstrated here.

The user is presented with multiple three-dimensional (3D) views of dimensionally

reduced sections of higher dimensional worlds or the objects embedded therein. The

user can explore these worlds by interactively selecting the desired sub-manifold,

point-of-view, or both. The proof-of-concept is demonstrated in four dimensions.

Solutions for yet more dimensions are suggested and described.

Certain characteristics and attributes of the higher dimensional models can be

revealed by the techniques demonstrated here.

Whether or not Extra Spatial Dimensions truly exist is irrelevant to their effective

use in science. We can leave the question of their “real existence” to the

philosophers. Use of extra dimensions will simplify complex mathematical formulae,

just as visualization will clarify complex mathematical relationships, simplify

concepts for the student, and the lay public, as well as for the researcher. Hidden

symmetries will become apparent, and unexpected results can be explored.

The appearance of new professional groups such as Computational Geometry and

Computational Topology may be the harbingers of the birth of a new field, one

whose domain is the synthesis of Cognitive Science, Computer Graphics, Topology,

Geometry, Group Theory, Physics, Scientific Visualization, and even Philosophy.

These conceptual breakthroughs coupled with visual workstation performance

increases make this an appropriate time to explore dimensional morphologies.

2



Figure 1.1: Compactified Dimensions
A Schematic Representation of a 5D Universe of 2 Compactified and 3 Infinite Dimensions.

1.1 The Conceptual Evolution of Extra Spatial

Dimensions

In 300 BC the geometry of Euclid[4] introduced the concept of isometric spatial

dimensions. The seventeenth century mathematician Rene Descartes introduced the

cartesian coordinate system. In his 1843 paper entitled “Chapters in the Analytic

Geometry of (n) Dimensions”,[5] Cayley became one of the earliest, and perhaps

the first, to publish a work on the geometry of more than three dimensions. In 1844,

following Cayley’s work, Grassmann published Extension Theory [6], encompassing

the concept of an n dimensional vector space. Then in 1854, Riemann delivered his

famous inaugural lecture on the foundations of geometry at the University of

Göttingen. This lecture, “On the Hypothesis which lie at the Bases of Geometry”[7]

in which curved metric spaces were described, extended non-Euclidean differential

geometry to extra dimensions and was seminal in what has come to be known as

Riemannian Geometry. His contribution created the mathematical framework for

3



Figure 1.2: A Diagrammatic Representation of an Infinite 5D Randall-Sundrum Uni-
verse

Two 4D branes embedded in an infinite non-Euclidean 5D universe

Einstein’s General Theory of Relativity.

Minkowski’s four-dimensional (4D) spacetime[8] introduced in 1908 consists of three

Euclidean dimensions and one time dimension which is asymmetric with respect to

the three Euclidean spatial dimensions. Einstein’s spacetime of General Relativity[9]

introduced in 1916, while locally Euclidean, is globally non-Euclidean. Kaluza[10]

and Klein[11] in 1926 proposed a non-Euclidean five dimensional spacetime with one

compact dimension. Arkani-Hamed, Dimopolous and Dvali[12] (ADD) showed in

1998 that there could be Large eXtra Dimensions1 that might explain the

hierarchy problem. The ADD closed compact Extra Dimensions are depicted by the

balls in Figure 1.1. In 1999, Randall and Sundrum[13] suggested that these

Universal Extra Dimensions need be neither compact nor Euclidean, but rather

could be hyperbolic as depicted schematically in Figure 1.2. Some contemporary

string theories embrace the ten-dimensions of Ramanujan’s mathematics[3] while

other theories consider even more, as well as fewer, dimensions.

The resultant blossoming of the concept of extra spatial dimensions has caused

higher dimensional representations to expand into ever greater fields and has

created a rich plethora of applications. Many of these fields can represent their data

1Underlined terms are defined in the Glossary on page 146
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Number of Simplex Simplex n− Cube n-Cube′s n-Cube′s
dimensions vertices name designator vertices commonname
0 1 point 0− cube 1 point
1 2 line 1− cube 2 line
2 3 triangle 2− cube 4 square
3 4 tetrahedron 3− cube 8 cube
4 5 pentachoron 4− cube 16 tesseract

Table 1.1: Table of Simplices and n-Cubes

as analogues in spatial dimensions. Treating multi-dimensional spatial data can thus

naturally address many of these applications.

The objective of this research is to develop strategies to interactively view and

explore extra-dimensions on the personal computer. The term extra-dimensions as

used here refers to more than the three common spatial dimensions. The term

includes both four spatial dimensions (4D) and 3-spatial plus one temporal

dimension (3+1)D, as well as 5D and (4+1)D, and yet higher dimensionality.

1.2 Terminology

Terminology is a challenge in the domain of extra dimensions. Many common

geometrical terms such as face, surface, sphere, etc, can become ambiguous and

must be interpreted from their context. To avoid this ambiguity, terms will be

defined in the glossary on page 146, and underlined at their first occurrence.

The term m-simplex refers to the simplest possible polytope in m-space. The terms

used for simplices of various dimensions are given in Table 1.1 and examples are

shown in Figure 1.7.

The prefix “hyper-” will be used in this dissertation usually to indicate that the

prefixed term refers to an object of a higher dimension than that of common usage.

But this prefix can also be used to indicate a generic dimensionality. For example,

hyper-cube could refer to any m-cube, while hyper-sphere could refer to any

5



m-sphere. A hyper-surface could be a 2D surface in 3-space, a 3-manifold in

4-space, or an m-manifold in (m+1)-space. A hyper-surface is a sub-manifold of

codimension one, which is to say that the hyper-surface’s dimensionality is one less

than the space in which it is embedded.

Two new concepts and their referents shall be introduced at this point, Aspect and

Pluck, and described here as well as in the glossary.

Aspect - This term is used to refer to a specific 3D Slice that creates a new 3D

object from an nD object dimensionally reduced to 3D, commonly referred to

as a 3D view, 3D shadow, 3D silhouette, or 3D Slice of a higher dimensional

object.

Pluck - This term refers to the operation which intersects a k-flat or kD hyperplane

with an m-manifold in n-space to extract a k-manifold object, where

codim(k) + codim(m) = codim(k ∩m) = (n− k) + (n−m) = (n− (k ∩m)

for k ≤ m ≤ n. For example, (4-space - 3-flat) + (4-space - 3-manifold) =

2-manifold. The 3-flat slicer in 4-space should extract a 2-manifold from a

3-manifold embedded in the 4-space. The algorithm introduced here will pluck

a triangular mesh bounding a 3D model from a tetrahedral mesh bounding a

4D model. The methodology is described in more detail in Section 6.2

Implementation.

1.3 A Brief Introduction to 3D Graphics

Programming

The conventional computer graphic visualization procedure is to:
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21st Century Graphics Hardware makes short work of triangles in 3D.
The hardware is designed to render 3D objects defined by bounding                         

pure simplicial 2-complexes – closed compact triangular meshes.

? Exit1 32 4

Graphics Card

Figure 1.3: The 3D Visualization Procedure

1. Construct three-dimensional objects using simple two-dimensional surface

primitives (usually triangles);

2. Transform the objects as specified via translate, rotate, and scale 4x4

homogeneous matrix operations;

3. Render these three-dimensional objects onto a two-dimensional viewplane as

seen from a particular point-of-view.

4. Animate the objects by changing the relevant matrices, incrementing the

image file, and repeating from Step 2 until the end of the animation.

As shown in Figure 1.3, the Transform and the Render steps of the 3D visualization

procedure are now performed in hardware on the graphics card in the contemporary

personal computer.

Since we are primarily interested in the shape of a 3D object, that is in how an

object appears, 3D objects can be represented by their 2D surfaces. The simplest

2D surface element is a triangle. The accuracy of an object’s representation can be

controlled by the number and size of the triangles of which it is constructed. The

process of separating an object’s surfaces into triangles is called tessellation, as

shown in Figure 1.4.
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Figure 1.4: A 3D Sphere with a surface tesselated by triangles

Animation is provided by iteratively moving the point-of-view and the objects in

step 4, then repeating from step 2. The simulation of the effects of physical forces

acting on the objects can be manifested by modifying the matrices that determine

how the objects are moved in step 2. The position and attitude of each object is

defined by a three-dimensional transform matrix composed of the translations and

rotations to be applied to each object. The point-of-view is defined by the

composition of a three-dimensional projection matrix which also includes the type of

projection (perspective, orthogonal, etc).

The transform matrix is composed by multiplying together each of the independent

rotation and translation matrices, corresponding to degrees of freedom in 3-space, as

in Equation 1.1. Note that the order of composition is critical since the rotation

matrices do not commute in the general case. This yields one 3D transformation

matrix with six degrees of freedom that can be multiplied by all the object’s vertices

to transform the object for each view.
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Figure 1.5: A depiction of camera showing view frustum.

Transform3D = RotationZ ×RotationY ×RotationX × (1.1)

TranslationX × TranslationY × TranslationZ

The 3D to 2D graphics hardware performs scale and perspective matrix transforms.

Given that physical objects cannot be shrunk or stretched, there are no

corresponding degrees-of-freedom for scaling in the implementation. However,

scaling and perspective transforms may occur in rendering. For a 3D view package

such as OpenGL the matrix of Equation 1.1 is handed off to the package’s geometry

engine’s pipeline for performance of the vertex transforms as part of the rendering

process. Detailed information about the 7D matrix composition methods used here

is provided in Appendix A, Matrix Composition.

In case of a perspective projection, rendering can be compared to capturing an

image with a pinhole camera. The viewable area for this camera is a frustum
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(truncated pyramid) that encompasses the volume from near the pinhole out

towards infinity. It is truncated to both limit the viewable space to a finite volume

and to prevent numerical overflow. All the objects within the view frustum can be

rendered onto the 2D image plane, which is represented by the position of the film

within the camera. The view frustum and image plane of a camera are depicted in

Figure 1.5.

Two common implementations of the rendering (3rd) step are the polygonal method

and the raytracing algorithm which implement projection and intersection,

respectively.

The polygonal method projects the object’s 2D surface polygons through a

point-of-view onto the two-dimensional viewplane, then clips and discards those

polygons invisible from the point-of-view.

The raytracing algorithm traces a lightray back from the point-of-view to its

origin, through each pixel of the display, out into the three-dimensional scene where

it intersects with the closest three-dimensional object. For both techniques, the

color (or material property) of the object is used to color the target pixel on the

image plane. For the ray-tracing implementation, objects can reflect and refract, so

that the lightray is filtered by each of those objects it encounters.

1.4 Extrapolating 3D Visualization to Visualizing

4D Models in 3D

Pursuant to our interest in the appearance of a 4D object in 3D space,

contemporary computer graphics methods would work were it possible to extract

representative 2D surfaces that faithfully represent the 4D object in 3D space. Two

new strategies will be discussed and implemented here, as well as proposed

alternative strategies that use these technologies to explore non-Euclidean space.
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Extrapolating the 3D transform of Equation 1.1 is almost straight forward, except

for the rotation. While rotation in 3-space can be characterized with a so-called axis

of rotation, this is insufficient information to uniquely specify an axis of rotation in

4-space. For example, the rotation of the X-axis into the Y -axis in 3-space holds

the Z-axis values constant as in 4-space. However, in 4-space the W -axis values are

also held constant by this operation. Hence, the Z-axis is no longer the

odd-man-out, so to speak. Either this can be called a rotation about the WZ-plane,

or a rotation of the XY -axes. The latter terminology shall be used here, wherein

the axes that are modified are used to characterize the rotation. As in 3D,

composing with one matrix for each degree of freedom yields the ten degrees of

freedom in 4-space as shown in Equation 1.2.

Transform4D = RotationXY ×RotationXZ ×RotationY Z × (1.2)

RotationXW ×RotationYW ×RotationZW ×

TranslationX × TranslationY × TranslationZ × TranslationW

There is no scale or perspective transform in this hypothetical 4-space.

The higher dimensional matrices require 25 MAC2 operations per vertex for the 4D

5x5 homogeneous matrix transforms as opposed to the 16 MAC’s required for

similar 3D 4x4 transforms.3

The concept of extrapolating 3D strategies into 4D was repeated for both raytracing

where retarded time was used to select the 2D representation of a classically

2MAC - The Multiply and Accumulate operation performs a multiplication and summation of
results in one operation. It is a common operation in digital signal processing (DSP) hardware. It
is used here to simplify discussion.

3The Spaceslice proof-of-concept Test-Fixture requires 64 MAC’s per vertex transform since it is
implemented in 7D and uses 8x8 homogeneous matrix transforms. The 3D portions could be opti-
mized to 16 MAC’s and the 4D portions to 25 MAC’s, but would not offer a significant performance
increase if ported to a well designed multi-core processor.
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relativistic 4D spacetime object; and user specified 3D shadows of 4D objects

plucked from a 4D world. It shall be shown in Section 7.3 that these 3D

representations are accurate within specified tolerance.

1.4.1 Matrix Composition Computational Complexity

Extrapolating the computational costs for an n dimensional implementation is as

follows. One translation for each axis n, plus one rotation for each unique pair of

axes (n2 ) requires (n+ (n2 )) matrix multiplications, which reduces to O(n2). Each

matrix multiplication requires O(n3) MAC’s, yielding O(n5) MAC operations for

dimension n. Matrix composition occurs once for each viewport, so the complexity

of the matrix composition is constant for a constant dimensionality. As noted

above, seven dimensions are implemented in the Test-Fixture imposing a

computation cost of (7 + 1)5 or 32K MAC operations per viewport per frame as

opposed to 1K MAC operations per viewport per frame for a 3D implementation.

Detailed information about the 7D matrix composition methods used here is

provided in Appendix A, Matrix Composition.

1.5 Constructing an Object of Extra Dimensions

A hyperobject of dimension m can be built of two extra-dimensionally

non-coincident objects of dimension (m− 1) in m-space, where m > 0, as shown in

Figure 1.6. For example, a line (1D) is defined as the connecting distance between

two points (two 0D objects) which are not coincident in the 1D space. A 2D square

is defined by connecting the endpoints (vertices) of two lines of equal length, parallel

in the extra dimension, whose distance from one-another in the extra dimensions is

equal to the length of the lines. A 3D cube is defined by two 2D parallel squares a

distance from one another along the extra dimension’s axis equal to the length of a
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Figure 1.6: n-Cubes of dimension - A) 0D; B) 1D; C) 2D; D) 3D; E) 4D
A) 0-cube; B) 1-cube; C) 2-cube; D) 3-cube; E) 4-cube
A) Point; B) Line; C) Square; D) Cube; E) Hypercube.

Figure 1.7: n-Simplices of dimension - A) 0D; B) 1D; C) 2D; D) 3D; E) 4D
A) 0-simplex; B) 1-simplex; C) 2-simplex; D) 3-simplex; E) 4-simplex.

A) Point; B) Line; C) Triangle; D) Tetrahedra; E) Pentachoron.

side whose 4 adjacent vertices are connected by lines perpendicular to the plane of

the square. A 4D hypercube is defined by two identical parallel squares which are a

distance from each other equal to the length of one of their sides, and whose vertices

are connected by lines perpendicular to the hyper-planes in which the cubes lie.

Thus a line is two connected points, a square is two connected lines, a cube is two

connected squares, and a hypercube is two connected cubes in four dimensions. One

could also define a 5D cube as two connected (4D) hypercubes.

In the database structure to be introduced here, the n-simplex will be used as the

fundamental geometrical element to described the nD objects. A progression of nD

simplices from the 0D 0-simplex through the 4D 4-simplex is shown in Figure 1.7.

Each simplex is formed from the prior lower dimensional simplex by adding a vertex

on the newest axis, and then connecting this vertex to all the existing vertices by a
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1D line. The nomenclature for these n-simplices is given in Table 1.1.

1.6 Contributions

Describing and viewing extra-dimensions and their morphology on the personal

computer has been a challenge due to a lack of an elegant extensible methodology to

represent higher dimensional models as well as the processing requirements of an

interactive solution. It is felt that if these challenges can be addressed effectively,

then the research can be expanded to include 7D and (6+1)D implementations. It is

hoped that the research can lead to computationally tractable methods to address

up to 11D and (10+1)D environments. Exploring extra temporal dimensions will

also be an interesting challenge.

This dissertation will describe a technology to address these issues with an

extensible mechanism and associated computationally tractable algorithms that will

convert higher dimensional models into a ubiquitous three dimensional model

representation for use on contemporary personal computers.

As noted earlier, the existence or non-existence of extra dimensions is irrelevant to

this research. It is expected that the ability to visualize and explore higher

dimensions, in addition to the obvious pedagogical advantages, will yield insights

into existing philosophical, metaphysical, physical, mathematical, topological,

geometric, and other scientific domains.

Three contemporary technologies used to address the above issues will be explored

in detail in this dissertation. It will be shown how a modification to the third

technology developed here is superior given the performance constraints and visual

objectives described above.
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Chapter 2

Prior Work

“... dimension 4 is an unstable boundary case: the dimension

is big enough to have room for wild things to happen, but the

dimension is too small to allow room to tame and undo the

wildness.” - Alexandru Scorpan, PhD[14]

Two earlier projects by this author leading to the research described here, are as

follows. These are mentioned here in order to put the current research into

historical perspective.

2.1 Realtime 4D Rotation Demo

In 1985, while developing the graphics package for a Computer Aided Design (CAD)

Workstation, a simple yet comprehensive demonstration of the capabilities of the

MC-68010 based Prisma graphics hardware was created: A module to rotate and

shade a colored 4D hypercube in realtime. The demonstration performed the

ubiquitous 4x4 matrix operations to rotate and dimensionally reduce the 4D model

to 3D, culled back facing polygons, then performed the usual 2D projection.
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Figure 2.1: Four Views of Four Euclidean Dimensions
Views are manipulated via thumb-sliders.

2.2 Interactive Multi-Aspect 4D Rotator

In 2001, a software device[15] posted on the internet to interactively rotate a 4D

hypercube was modified[16] to introduce multiple aspects where each of four 3D

viewports contained a different set of three dimensions, each a different Aspect in

3-space of the same 4D hypercube. Figure 2.1 shows a 4D tesseract which has been

projected with perspective into 3D and then projected once more onto a 2D

viewport for display. The three viewports labeled TOP, FRONT, and SIDE, have

been arranged so as to be similar to a 3D CAD-like view. The forth viewport in the

upper right corner is an alternate 4D view, the XYW Aspect in this case.

For the discussion here, consider this tesseract (4-cube) to have been constructed

from a pair of unit 3-cubes one unit distant from each other on the W -axis, one red

and one cyan. The cyan cube is on the -W side of the tesseract and the red cube is
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Figure 2.2: Four Views of Minkowski 4D Spacetime
Views are manipulated via thumb-sliders.

on the +W side. Projecting with perspective along the W -axis from the red positive

end towards the cyan negative end would, at the proper distance, cause the distal

cyan cube to appear to be inside the red cube as depicted in the TOP, FRONT and

SIDE viewports of the figure. The three views show the 3D shadow of the 4-cube as

projected along W -axis. The relative size of the two cubes give information about

their relative positions along the projection axis.

The upper right viewport labeled X, Y,W shows the tesseract rotated so as to

project in perspective along the Y -axis providing an XZW Aspect of the tesseract.

The relative sizes of the inner and outer cubes suggest the relative distances along

the Y projection axis.

Figure 2.2 depicts the ubiquitous hypercube in a (3+1)D Minkowski spacetime.
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2.3 Spacetrace - 4D Spacetime Raytracing

“..attempts to clarify this paradox satisfactorily

were condemned to failure as long as the axiom ...

... was rooted unrecognized in the unconscious.”

- Albert Einstein on absolute time

2.3.1 Introduction

This section describes prior work wherein a ray tracing algorithm had been used to

visualize a Euclidean 4D model of Minkowski spacetime.

For simplicity, a flat spacetime and temporal homogeneity with no acceleration

were assumed, and lighting effects were not considered. Under these conditions flat

Minkowski spacetime is Euclidean for an inertial observer. The corresponding model

can then be viewed and animated based on 4D raytracing.

Temporal extrusion of an inertial 3D object into 4-space along its normalized

velocity 4-vector (worldline), followed by the Lorentz transformation (length

contraction and time dilation) of the object into the inertial reference frame of the

stationary camera were used to model object behavior. The camera was then moved

along the time axis, raytracing the 4D space, and creating an image collection that

was subsequently composited into a video sequence capturing the time-varying

effects.[1]

In the following sections the fundamental assumptions will be discussed as well as

the Minkowski 2D and 3D spacetime diagrams; the model will be described as well

as the construction of 4D objects from 3D objects; and finally, the resulting

animations of 3D objects in 4D spacetime will be demonstrated.
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2.3.2 Implementation

Terrell[17] and Penrose,[18] demonstrated the visual phenomena explored here can

be described as the combination of a pre-relativistic purely optical effect due to

finite lightspeed that was discovered by Roemer in 1677,[19] and special relativity’s

four dimensional spacetime discovered by Minkowski in 1908.[8] The finite speed of

light leads to effects analogous to those of sound, as in the case of locating the

position of a fast high flying jet by the sound of its engines. Finite and invariant

lightspeed requires the physical phenomena predicted by special relativity: time

dilation and length contraction. Time dilation is observable only if there is a

variation in the object during the viewing period, as in the muon particle’s decay.

Length contraction is observable by differences in the geometry of a relativistic

object at rest and in motion.

Background

Relativistic 4D spacetime (t, x, y, z) consisting of both space and time, is often

labeled (3+1)D, referring to three spatial dimensions (x, y, z) and one time

dimension t. Similarly, a 3D spacetime (t, x, y) could be referred to as (2+1)D,

which is to say containing two spatial dimensions (x, y) and one time dimension t.

The most convenient units for the purposes discussed here are relativistic units

where c = 1. The benefit of using relativistic units is that the units along all the

spacetime axes have the same scale, resulting in a lightray traveling one unit along

the spatial axes for each unit it travels along the time axis, similar to the isometries

assumed in Sections 2.4 and 6. A lightray c can thus be represented in a Minkowski

2D spacetime diagram as a 45◦ bisector, or in a 3D spacetime diagram as the surface

of a right circular cone, both shown in Figure 2.3. The light-second, the distance

light travels in a second, will be used as the basic unit of measure in this section.

An object’s worldline is its 4D path through spacetime. The instantaneous
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Figure 2.3: (1+1)D and (2+1)D Minkowski spacetime diagrams
A camera at the origin can only ’see’ an event in the past whose lightray passes from that event

through the camera at the origin.

direction of an object’s worldline is the object’s proper time axis. The slope of this

proper time axis in the Minkowski diagram represents the object’s speed. The

worldline through flat spacetime of an object with a constant velocity is a straight

line. The normalized tangent to an object’s worldline is the object’s instantaneous

velocity 4-vector.

A 3D object can be created by extruding a 2D object in a direction perpendicular

to the 2D plane in which the object lies (for example, by extruding a square from

the X, Y plane along the Z axis). Likewise, a 4D object can be created by extruding

a 3D object in a direction orthogonal to the 3D hyperplane in which the object lies.

A 4D example would be the extrusion of a cube from the X, Y, Z 3-space, along the

T axis. Two examples are shown in Figure 2.4. This operation is termed temporal

extrusion when a 3D object is extruded along its 4D worldline.

Raytracing[20] is a geometric 3D image rendering algorithm that colors the pixel on

a viewplane by sending a ray from the viewpoint, through a pixel on the viewplane,

and out into the scene’s 3-space where it may intersect the 2D surface element (such

as a triangle) used to define the boundaries of a 3D object. The color of the object’s

surface at the intersection is used to color the corresponding pixel in the viewplane.
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Figure 2.4: Cube & triangle: Extruded then tessellated

This procedure is repeated for each of the pixels in the viewplane. Howard[21]

adapted the open-source 3D raytracer POV-Ray Version 2.0 to relativistic raytracing

by changing the angle of incidence as a light ray passes from one inertial reference

frame to another. It was necessary to increase the model’s flexibility in order to

demonstrate the difference between finite lightspeed effects and relativistic effects.

A four dimensional raytracer was developed by globally extending a 3D

raytracer’s[22] vector math package from 3D to 4D and adding a fourth component

t to the coordinate system. The lightrays were constrained to lie on the negative

lightcone so that the ray traveled through the model at lightspeed. The resulting

4D raytracer can image a Euclidean 4D space of 4D objects.

It can be shown that the length of an object with an arbitrary constant relativistic

velocity β = v
c

will contract in the direction of motion by a factor of

1
γ

=
√

1− β2. It can also be shown that the proper duration between any two

events on the relativistic object’s worldline will expand (dilate) by the Lorentz

factor γ = 1√
1−β2

. This is known as length contraction and time dilation ,

respectively.
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Object Construction

Any 3D object defined by bounding triangles such as the cube in Figure 2.4a can be

temporally extruded into a 4D hyperobject and inserted in the scene’s 4-space

by extruding each f of its n individual triangles as follows. Assuming that the

triangle’s vertices are defined by their 3D coordinates in 3-space, insert a t

component into each of the vertex coordinates and set t to some constant value, say

t0.

(xi, yi, zi)f → (t0, xi, yi, zi)f .

When performed on all three vertices i, the 2D triangle f will have a unique

location in 4-space.

Figure 2.5: Temporal extrusion: Triangle at rest extruded into prism

The object now lies embedded in the XY Z hyperplane that is orthogonal to the t

axis at t0 (original Object in Figure 2.5). Each of these triangles f , and hence the

object composed from them, can be extruded into the 4th dimension by duplicating

the vertices of the triangles with lesser (or greater) values for the t components. If

the object is at rest in the camera frame, a constant ∆t can be added to the t

component of each of the object’s original triangles in the t0 hypersurface to create
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an f ′ duplicate triangle to be used as the object’s position in the t0 + ∆t

hypersurface.

(t1, xi, yi, zi)f ′ = (t0, xi, yi, zi)f + (∆t, 0, 0, 0) (2.1)

Where f = {1..n} refers to each of the original triangles, f ′ = n+ {1..n} to each of

the corresponding extruded triangles, and i = {1, 2, 3} to each of the corresponding

vertices that define each triangle pair.

As shown in Figure 2.5 where ∆t < 0, connecting the three vertices (i = 1, 2, 3 in

Equation 2.1) of the original triangle f with the respective vertices of the extruded

triangle f ′ creates a 3D prism from the original triangle. Thus the triangle f exists

only between t0 and t1, inclusive.

The prisms are then tessellated 1 into three adjacent tetrahedra as shown in

Figure 2.4e. The 3D simplices are necessary for the barycentric algorithm (described

below) used to determine where, on the 3-manifold surface of the 4D object the

intersection with the lightray occurs, as well as the intersection algorithm of

Section 6

An object’s velocity is represented by changing the position of the extruded end of

the triangle (Figure 2.6) with respect to the original end: xend = xbeg + ∆x spatial

units. The speed in the camera frame would thus be ∆x
∆t

spatial units
time unit

. Canceling the

units yields the dimensionless fraction ∆x
∆t

. A lightray’s slope c = ± 1.0 is

represented by both the diagonal lines and the surface of the lightcone of Figure 2.3.

For the general 3D case, where the distance traveled in time ∆t is

∆d =
√

∆x2 + ∆y2 + ∆z2, the speed would be ∆d
∆t

, and Equation 2.1 would

become:

(t1, xi, yi, zi)f ′ = (t0, xi, yi, zi)f + (∆t,∆x,∆y,∆z) (2.2)

1See Tessellation in Glossary.
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Figure 2.6: Temporal extrusion not parallel to ’t’ axis
Object has moved: velocity = ∆x

∆t

Viewing 3D Objects in (3+1)D Spacetime

Consider a camera at the origin, whose line-of-sight (LOS) is collinear with the x

axis. Since a lightray’s worldline as depicted in the spacetime diagram lies on the

lightcone, an object must cross the lightcone in the diagram in order to be visible to

the camera. In fact, the object is visible to the camera only while it is intersecting

that lightcone whose apex is coincident with the camera (assuming the camera is

pointing at the object) as shown in Figure 2.7.

Figure 2.7 depicts a right circular hypercone in 4-space, whose symmetric axis is

collinear with the −t axis, and whose apex is coincident with the camera at the

origin (0, 0, 0, 0). This hypercone’s hypersurface, depicted by the inverted cone, has

3 dimensions, sufficient to contain the camera’s focal point and the lightrays

entering its lens. Although a 3-manifold in 4-space, this hypercone is known as a

lightcone. A lightcone is thus the locus of all points that satisfy:

(tp, xp, yp, zp) = (−
√
x2
p + y2

p + z2
p , xp, yp, zp) (2.3)
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Figure 2.7: Temporal extrusion of moving object with lightcone
A non-relativistic spacetime: finite lightspeed but no Lorentz transform

Note that the light travels from the object to the lightcone’s apex at the origin. As

depicted by the broken lines representing lightrays in Figure 2.7, a camera located

at the apex in this 4D model can see only those 3D objects whose extruded triangles

(tetrahedra triads) intersect the lightcone. The only visible objects are those with

vertex extrusion pairs (t0, xi, yi, zi) of the original object and (t1, xi, yi, zi) of its

extruded end-cap, where

t0 ≥
√
x2
i + y2

i + z2
i ≥ t1, ∀ {(t0, xi, yi, zi) & (t1, xi, yi, zi)} (2.4)

The intersecting portion of the extruded triangle is depicted by the triangle labeled

visible intersection in Figure 2.7. Note that geometric distortion in the object is

caused by the intersection of the triangle and the lightcone. An object in the

lightcone is easily detected since a straight line can be intersected with a 3D object

in Euclidean 4-space in the same manner as a straight line is intersected with a 2D

object in 3-space.
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Animating Spacetime Objects

There is no mathematical or geometric limit to an object’s speed in the model, its

velocity being the slope of the temporal extrusion vector. For real physical objects,

some physical mechanism must accelerate the object to the speed with which the

object enters the model’s laboratory inertial frame. It can be assumed with some

confidence that this speed must be less than that of light. The physical objects will

then maintain an extrusion vector with a |∆x|
∆t

slope of less than 1.0, or an angle of

less than 45◦ with respect to the t axis on the Minkowski diagram as shown by θ in

Figure 2.6. Since only uniformly moving objects are being considered, the specifics

of the spacetime rotation that yield the extrusion angle can be ignored.2

Two classes of 4D objects have been implemented: one for the finite lightspeed

objects and one for relativistic objects. The first is inserted into the scene without

length contraction or time dilation as shown in Figure 2.7, and the second is

inserted with the Lorentz transformation as shown in Figure 2.8. Conceptually, the

former may be considered to have been measured in the laboratory inertial reference

frame’s subjective units (it was already length-contracted and time-dilated), while

in the latter case the object was measured in its own rest frame. The relativistic

objects therefore must be length contracted and time dilated prior to insertion.

The animation procedure is straight forward. For example, to generate 20 seconds

of animation at 10 frames per second (∆t = 0.1seconds), the procedure is as follows.

1. Beginning with the camera at (t0, x0, y0, z0), a view is rendered and saved.

2. The camera is moved forward along the time axis to (ti, x0, y0, z0), where

ti = ti−1 + ∆t and the view is rendered and saved;

3. Repeat from step 2 while ti < 20.

2The temporal homogeneity assumption obviates the need for a discussion of hyperbolic rotation.
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Figure 2.8: Lorentz transformed object
A velocity in the neighborhood of 86.6% of c yields a γ factor around 2. The prism is shown length

contracted by ∼ 1
2 and its proper time axis is dilated by ∼ 2

Notice that the pinhole camera’s spatial components (x, y, z) do not change, only

the time component of the camera position. Crucial to the simplicity of the

procedure is the fact that the 4D object’s bounding surfaces (and the tessellating

tetrahedra that comprise those surfaces) do not change . The 4D world is static.

Only the point of intersection of the lightcone changes as the camera and its

lightcone progress along the t axis.

4D Intersection Algorithm

Lightcone crossing events are detected by solving for the intersection of a lightray

with each of an object’s bounding tetrahedra. The set of lightrays is defined as that

set of 4D straight lines passing from the camera through each of the pixels in the

viewplane’s pixel grid and out into 4D space. Using a 4D implementation of the

barycentric algorithm to compute the intersections of the ray with all tetrahedra

faces, we select the intersecting event nearest to the camera (with the t value closest

to 0.0). The array of 1D lightrays that originate from the gridded viewplane results
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in a 2D image of the objects projected onto that viewplane.

Since the objects have been Lorentz transformed prior to the intersection, such that

their geometry is correct for the camera frame in which the intersection occurs, the

geometric components of the lighting model, the surface normal and the reflection

angle, can be used to approximate the pixel shade just as with a conventional

lighting model in 3D rendering.

Photorealistic rendering requires the addition of lighting effects such as Doppler

shift[23] and the searchlight effect, which could dominate the rendered image and

obscure the visualization of the object’s geometry.[24] For this reason, these effects

were not implemented in this model.

2.3.3 Examples of Ray Traced 4D Spacetime

Three models of relativistic motion are displayed in the sequential images in

Figure 2.9. The object displayed is a flange (angle bracket) 2 light-seconds wide by

2 light-seconds deep by 4 light-seconds tall. Its thickness is negligible (being

constructed of four 2D triangles). The top row shows the traditional ray-tracing

technique, where the lightspeed is effectively infinite. In the middle row, the

pre-relativistic optical effects are shown, while in the bottom row, the relativistic

effects are displayed. The finite lightspeed camera (top row) was moved ahead in

time 18.675 seconds, an amount equal to the lightspeed delay from the center of the

stage to the camera, so that the flanges appear to be in approximately the same

positions.

The scene is set upon a stage with an overhead light source, both at rest in the

camera frame. Two flanges approach, cross, and depart the centerline of the scene

at 0.866c. The geometric distortions of the center row are due exclusively to

classical aberration. Those of the third row are due to relativistic aberration.

The stage’s mirrored backdrop shows the reflections of the flanges from behind.
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Note the difference in the positions of the reflections in the three rows. The top row

shows the instantaneous reflections of the flanges, while the middle and bottom rows

show the retarded reflections due to the lightspeed delay imposed by the added

distance to be traveled by the lightray from the object to the mirror and back. The

distances modeled are on the order of the size of the Jovian system.3

Note the bottom flanges appear to cross each other before the top flanges. Note

also, that even with this head start, the top flanges arrive at their respective edges

at the same time as the bottom flanges. The bottom flanges appear to approach

faster and retreat slower than the top flanges. This is the visual evidence of the

pre-relativistic optical effect known as classical aberration. The flanges approaching

the centerline of the stage are obliquely approaching the camera. Aberration causes

the angle from the centerline to the flanges to appear smaller than the proper angle

of incidence, resulting in the object appearing closer to the centerline, or ahead of

the object’s proper position as depicted in the top view.

This is true for both the leading and the trailing edges of the flange, independently.

As a result, the leading edge, which is closer to the centerline, appears to have

moved further than the trailing edge, giving the impression of a wider flange. The

opposite effect occurs as the flanges move away from the centerline. The flanges

appear to incrementally speed up and simultaneously contract as they move

relativistically away from the camera. These aberration effects are apparent in the

bottom two panels of each image of Figure 2.9.

2.3.4 Observations

It is possible to accurately visualize 4D spacetime with a simple linear algorithm.

However, there are significant performance issues that could be addressed with more

3At the recorded animation rate (your playback may differ), the size of the stage is about 6
million Km on a side (20 light-seconds), easily large enough to encompass the planet Jupiter and
the orbits of its four largest moons.
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Figure 2.9: Two 4D Objects Crossing at 0.866c
Sequential images of two 4D objects converging then crossing at 0.866c on a mirrored background

Top row: infinite lightspeed 4D raytracing; Center row: pre-relativistic spacetime; Bottom row:
relativistic spacetime

Accompanying video filename figure-2.9.mov. Video ID: teaser-AA,sceneH.1e
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sophisticated algorithms, as will be demonstrated in Sections 2.4 and 6

It is possible to implement a simple algorithm that consists of a finite lightspeed

component and a length contraction component to yield special relativistic

spacetime visualizations.

2.4 Spacegrid - nD Multi-view Lattice

The Challenge: visualize curved spacetime

2.4.1 Introduction
Space tells matter how to move

Matter tells space how to curve

- Misner, Thorne & Wheeler[25]

The objective here was to explore the very shape of space itself.

A discrete spacetime is hypothesized, consisting of regular isometric “hypervoxels”

whose hyper-volume is equal to the fourth power of the length of the edge: l4. Each

hypervoxel is represented by a point or dot analogous to a test particle consisting of

only “passive mass”4 at its geometric center.

To probe this four-space, consider this force to be an analogue of Newtonian gravity.

Hypothesize a unipolar attractive force whose strength falls off with the inverse of

the square of the distance of the lattice cell from the origin of this force as with

Newtonian gravity.

In the domain of Einstein’s Theory of General Relativity, the positions of these cells

and their perturbation due to gravity will represent the curve of spacetime due to

the presence of matter. These perturbations will be representational only since the

4Passive Mass - mass can be divided into three categories: active, inertial, and passive. Active
mass generates gravity; Passive mass is affected by gravity; Inertial mass is affected by inertia. Note
that all three masses are empirically identical.
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result of gravity will be approximated by Newton’s simple Equations of Motion

rather than the more complex Einstein Field Equations. This state of affairs is

deemed acceptable since the intent is to demonstrate a view strategy rather than

physical laws. Explaining the theories of relativity is beyond the scope of this

dissertation. The curious reader is directed to Gravitation[25] and the citations of

Section 1.1.

In order to examine the very shape of space itself, it is necessary to develop both

the visual tools and perceptual basis. This module implements a four-dimensional

(4D) visualization of a dynamically warped discrete spacetime. Included is a

capability to extend the visualization to five dimensions.

Motivation - Viewing the Shape of Space

Computer Aided Design (CAD) packages view 3-space from multiple viewports,

each representing alternate projections of 3-space into the view frame’s 2-space.

Engineers, technicians, CAD operators, and video game aficionados are well versed

in decoding the information presented to them as interactive 3D views. Likewise,

the view of 4-space may be approximated by using the CAD paradigm to view

alternate 3D projections of the 4-space into 3-space. Daily experience is of a locally

flat isometric 3-space. Beyond the local manifold, the Universe is a gravitationally

warped spacetime.

Flat Isometric Space Euclidean space is flat, that is to say, it is isometric.5 This

space could be easily represented by a regular lattice stretching to infinity in all

directions, including the time direction. The lattice of green equidistant tick marks

shown in Figure 2.10 is used to represent a flat isometric 4-space.

5Newtonian gravity lives in Euclidean 3-space.
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Figure 2.10: Static Euclidean 4D Spacetime Lattice
Green dots show undisturbed state

Standard CAD Views: A) - Top; D) - Front; E) - Side;
Project 4D to 3D along: B) - Z axis; C) - X axis; F) - Y axis

Retarded Time Many applications, especially those in the physical sciences,

require an historical (time) component in order to process the contribution of any

causal phenomena.6

Spacetime Not all spaces are symmetric. For example, Minkowski spacetime is

asymmetric - the time axis is not symmetric with the three space axes. But by

treating this fourth T axis as a symmetric ‘history’ axis rather than as a ‘time’ axis,

we can visualize this 4-space isometrically.

Curved Space Applications requiring non-Euclidean space are not uncommon.

For example, Einstein’s spacetime is non-Euclidean since it can be warped by the

6Both classical and relativistic spacetime require a time axis for retarded physical phenomena
such as light propagation or gravitational effects.
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Figure 2.11: Perturbed 4D Spacetime Lattice
Shifted green dots show spacetime positions. Spacetime event history is displayed along the fourth

or T (time) axis. The lattice of uninteresting unperturbed dots clutter up the display.

presence of a massive particle. In response to the question as to how the shape of

this ‘warped’ spacetime around a massive particle can be represented, perturbations

were added to the positions of the tick marks to represent distortions in the

spacetime metric. As shown in Figure 2.11, the warp of spacetime can be depicted.

But visualization of a discrete multi-dimensional spacetime introduced clutter and

other problems which must be addressed.

Design Goals

This module was designed to explore multiple viewports of alternate POV’s and

alternate dimensions or Aspects. First, a warped lattice in 4-space was explored,

then the algorithm was be extended to five dimensions.

The visualization package is required to:

34



Figure 2.12: 1st Order Differential 4D Spacetime Lattice
Red shaded dots show spacetime compressing towards the event (or increasing attractive unipolar
field strength) while blue shaded dots show spacetime expanding away from event (or decreasing

attractive unipolar field strength). Spacetime event history is displayed along the fourth or T
(time) axis.

1. View four or more dimensions simultaneously;

Multiple 3D viewports must be displayed, where each contains an alternate

Aspect of the n-space from a different Point-Of-View and with a different

subset of dimensions.

2. Rotate, scroll, pan and zoom interactively via mouse click & drag;

The views of each viewport, both individually and collectively, must be able to

be rotated about each axis and translated along each axis in 3D via mouse

click & drag actions.

3. Visualize causal retarded time contributions;

Retarded causal signals, such as light waves or gravity, suffer propagation
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delays from the source due the finite speed of transmission. A capability,

similar to the emergent retarded time effects of 4D ray tracing (as requested in

Section 2.3.4), is required if any relativistic effects are to be depicted.

4. Visualize dynamically warping spacetime;

A method must be implemented to visualize dynamic spacetime warping such

that the effects of mass curving space can be seen. The method should be

extensible to an arbitrary dimensionality.

5. View velocity, acceleration, and jerk effects.

A method must be identified to visualize the dynamics of spacetime warping

that is extensible to an arbitrary dimensionality.

6. Test and demonstration

A process must be selected to predictably perturb the lattice grid.

7. The Fifth Dimension

A goal is to extend the algorithm into extra dimensions, 5D for example.

8. Animation generation and storage

A mechanism to record the animated sequences and store them as viewable

videos is required.

2.4.2 Implementation

The system was implemented as a 5D floating point array of two 7D vectors and

three scalars at each lattice cell. The extent of each dimension in the array

represents the size of the world-space in that dimension - for example, the default X

dimension is -10 to +10 in steps of 0.5 units. The T axis is a 4D FIFO of the saved
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Figure 2.13: 2nd Order Differential 4D Spacetime Lattice
Red shaded dots show spacetime acceleration towards the event (an increase in the rate of the

increase in attractive unipolar field strength) while blue shaded dots show spacetime accelerating
away from event (a decrease in the rate of decrease of strength).

4-space history of user specified duration. This is a classical rather than a

Minkowski spacetime T axis.

The display shows a green colored tick mark for each lattice cell in its default

position (Figure 2.10). The cell position can be modified as described below and

shown in Figure 2.11. The clutter from the other unperturbed cells makes it difficult

to see the relevant information.

View four or more dimensions simultaneously

As shown in Figure 2.12 four dimensions are displayed simultaneously. Three 3D

CAD-like representations are shown as Top, Front and Side in viewports A,D, & E,

respectively. These 3D views are all slices of the T axis orthogonal to the T axis at

its initial minimum position. Viewports B, C, & F depict the projections of the
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Figure 2.14: 3rd Order Differential 4D Spacetime Lattice
Red shaded dots show spacetime “jerk” towards the event (an increase in the rate of the increase’s
increase in attractive unipolar field strength) while blue shaded dots show spacetime accelerating
away from event (a decrease in the decrease’s rate of decrease of strength). The spacetime event

history shows the “bow wave” along the fourth or T (time) axis.

4-space to 3-space along the Z, X, & Y axes, respectively.

The interactive operation and recorded animation sequences will show the 3D

depiction in motion while the 3D slice propagates along the time axis. The time

axis, which contains the 3D (or 4D) history can be used by the relativistic mode to

compute the delayed-time contributions to the depiction.

Figure 2.15 is an example of the 3x3 5D viewport format with the fifth or W axis in

the rightmost column. The three rightmost viewports depict from top to bottom

the WXY , W Y Z, & WX Z 3D views, respectively. The dimensional reduction is

performed conceptually by slicing the 5-space orthogonal to the T axis at t0 and

then slicing the resultant 4-space orthogonally to each of the views complementary

4D spatial axes: Z, X, & Y . The displayed value of the W axis represents the time
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dilation required of the T dimension in order for the hyper-voxel volume to be

Lorentz invariant.

Rotate, scroll, pan and zoom interactively via mouse click & drag

The user can manipulate the 3D view matrices for each of the six viewports via the

mouse. While viewports B, C, & F can be manipulated individually, viewports A,

D, & E share the same matrix, which is composed with the B, C, & F matrices so

that all six viewports move in concert when A, D, & E are changed.

The left mouse click & drag7 action rotates the view to follow the mouse, middle

mouse click & drag performs pan & scroll (translation), while right mouse click &

drag will zoom.

Some of these operations may be easier to use with constraints imposed on how the

cursor follows the mouse. For example, allow the user the option of using sliders,

thumb-bars, and even text fields to specify rotation angles and position in a control

panel as implemented in the online HyperCuber Applet.[15]

Visualize causal retarded time contributions

A Euclidean time axis, symmetric with the spatial axes, should suffice as a record of

the spatial dimension’s history, to be used for retarded time signals. This

implementation should not aversely affect interactive performance. Alternative

asymmetric non-Euclidean approaches for representing the T (time) axis relevant to

Special Relativity and General Relativity are given in Section 8 Future Work.

7Left [Middle or Right] mouse click & drag refers to depressing the left [ middle or right mouse
button while the mouse cursor is over the object in question and moving the mouse without releasing
the button until the desired operation is complete.
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Figure 2.15: 2nd Order Differential in 5D Spacetime Lattice
The rightmost column depicts a 3D slice of the 5-space at t0 and Z=0, X=0, & Y=0 for each of

Top, Middle, & Bottom, respectively As in other figures, shaded dots show cell’s acceleration
status. Note the bow-wave on the T axis.

Visualize dynamically warping spacetime

The visualization provides realtime graphic double-buffer updating. The observer is

privy to the dynamic changes in the position of the spacetime cells - or that is to

say, the warpage or shape of space. Note that only the spacetime effects of the

hypothetical gravitational source (the Source) are viewed, the Source itself is never

displayed. The user must interpret the position of the Source from its effects on the

lattice. This is intentional.

View velocity, acceleration, and jerk effects

The amplitude of the difference in the cell’s prior position and the cell’s perturbed

position can be computed and colored by value. The cells whose difference in
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position is below some threshold ε are not displayed, while cells in specified ranges

are colored to indicate the range the cell’s perturbation lies within, as in

Figure 2.12. Since the cell’s history is saved for at least six iterations, the second

order derivative (Figure 2.13) and third order derivative (Figure 2.14) of cell’s

displacement and hence of the perturbing function can be similarly displayed via

color coding. The display of the lower order differentials below some arbitrary delta

value can also be suppressed.

Differential Display Modes

1. Differential display:

Tick marks for static cells are removed, showing only dynamic cells’ tick

marks.

2. Stochastic display:

Aliasing artifacts are suppressed by randomizing a tick mark’s position within

its cell.

3. Velocity, a first order differential display:

The first order differential of lattice grid’s position is displayed as red shaded8

when compressing towards event, or blue shaded9 when expanding away from

event.

4. Acceleration, a second order differential display:

The second order differential of the lattice grid’s position is displayed. The cell

is shown as red shaded when compression is increasing (accelerating towards

8Red shaded - a bright red dot indicates an increase in the numerical value in the direction of
the event while yellow indicates a lessor value. Green indicates the nominal or 0 differential within
some ε

9Blue shaded - a bright blue dot indicates an increase in the numerical value away from the
event while cyan indicates a lessor value. Green indicates the nominal or 0 differential within some
ε
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the event), or blue shaded when compression is decreasing (accelerating away

from event). This mode has a higher precedence than and overwrites the first

order differential mode.

5. Jerk, a third order differential display:

The third order differential of the lattice grid’s position is displayed. The cell

is shown as red shaded (increasing acceleration towards event) or blue shaded

(decreasing acceleration away from event). This mode is the highest

precedence differential display.

Demonstration

The demonstration mechanism warps the grid by moving each lattice cell with

respect to a hypothetical unipolar attractive source (Source).

Gravitation A simple function to perturb the positions of the cells has been

introduced by hypothesizing an attractive force at the Source that affects each cell

as a function of the inverse of the square of distance from the Source, conceptually

similar to a Newtonian gravitational field generated by a gravitating mass at the

Source. A scalar value proportional to the inverse of the square of the distance from

the center of the cell to the position of the Source is stored with the cell in the

lattice array. In addition the position of the cell is perturbed towards the Source by

a distance proportional to this scalar value. Effectively, this value is used to scale

the normalized cell-to-Source direction vector which is then added to the position.

Each cell is thus offset towards the Source as a function of its distance from the

Source. The colors are then set as a function of the difference between the cell’s

current scalar value and the cell’s prior scalar values, depending on the order of the

differential. Only the color is a function of the order of the differential, not the cell’s

position.
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Oscillation The origin of the attractive force, call it a gravitating mass (Source),

can be oscillated via a sine function along the Y axis to approximate the cyclical

sinusoidal acceleration of a massive particle.

Orbit The sine oscillation can be converted to a circle in the XY plane by adding

a cosine generator to the X axis.

Velocity A velocity in an arbitrary direction can be added to the oscillating or

circling mass.

The Fifth Dimension

A fifth dimension can be enabled in the lattice array and in the display. The fifth

axis W shows the Lorentz dilation of the T axis required to maintain a Lorentz

invariant spacetime volume.

Animation generation and storage

An animation capability is provided where each frame is one slice along the fourth

or T (time) axis. Each individual frame of the animation sequence is output as a

.ppm images file and can then be compressed into a QuickTime .mov video file.

2.4.3 Observations

Sample frames of the animations are provided as figures 2.10 through 2.14.

Figure 2.10 shows the background of the static Euclidean E4 4-space via a standard

six viewport 3x2 representation of four dimensions. The conventional CAD three

viewport Top, Front, and Side representation of the XY Z Aspect of a 3D object is

depicted in the three viewports labeled A, D, & E, respectively. The remaining

three viewports labeled B, C, & F show projections of the 4-space into 3-space along

the Z, X, and Y axes, respectively. The origin on the T -axis, the t0 position, is the
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minimum value of t (there are no values less than 0.0). The position of the axes in

the views containing the T -axis is the mid-point of the T -axis, not its origin. The

XY Z view may be considered to be a 3D slice through the TXY Z 4-space at t0.

Introducing an event into the lattice, such as a unipolar attractive Source

represented by a perturbation of the tick marks, is hidden by the clutter of the

lattice as shown in Figure 2.11.

Removing all the ticks whose perturbation is less than some ε cleans up the image

nicely showing only those areas in spacetime that are of interest. Furthermore,

adding a color code to those ticks whose differential lies within certain bands can

depict relevant information about the spacetime perturbation. For example, in

Figure 2.12 the voxels experiencing an increase in the attractive force ≥ εr are red

shaded, while those experiencing a decrease in the attractive force ≤ εb are blue

shaded. This figure uses the same viewport representation as Figure 2.10, where A,

D, & E are 3D XY Z views, and B, C, & F are 4D projections into 3D.

Pursuing this strategy further suggests that second and third order differentials can

be likewise represented by red or blue shading. Figure 2.13 demonstrates a 2nd

order differential, comparable to acceleration in the gravity analogy, with two red

shade intensities represented by red and yellow indicating an increase in velocity

(acceleration) of the tick mark towards the Source, while the two blue shade

intensities represented by blue and cyan indicate a decrease in the velocity

(deceleration) towards the Source.

A 3rd order term, jerk (sometimes known as jolt, shock, surge, lurch or

super-acceleration), which is the derivative of acceleration with respect to time is

represented in Figure 2.14 in the manner of the prior two data representations with

regard to red shading and blue shading.

Jounce or snap are sometimes used to refer to the fourth order term, and are

mentioned here for completeness. While crackle & pop are sometimes facetiously
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used (as in snap, crackle, & pop) for the fifth and sixth derivatives of position with

respect to time, respectively.

To remove aliasing artifacts introduced by the regularity of the grid, a stochastic

display mode was implemented as an option that randomly positions each dot

within its cell. This stochastic randomization procedure could have used a Gaussian

distribution to conform to the quantum ground state in the Standard Model, but

the compute time was deemed too expensive for the visual return. The stochastic

feature was not used for figures 2.10-2.14.

There is no storage compression algorithm in this implementation. The storage

complexity is O(Ln) where n is the number of visualized dimensions, and L is the

length of the edge of the n-space. In the examples here, L is 10 and n is 4, requiring

10,000 storage cells. For the example if Figure 2.15, L is 10 and n is 5, requiring

100,000 storage cells. The Spaceslice implementation could effectively compress

storage requirements by displaying only those cells containing a vertex of the nD

object reducing storage complexity to VnD.

Spacegrid performance data for the above 4-space examples is provided in Table 7.1

of Section 7.4.1 in the Results and Evaluation chapter, below. The matrices are

composed as described in Appendix A, Matrix Composition, with computational

complexity is as described in Section 1.4.1, Matrix Composition Computational

Complexity.

It is important to note that a visualization system has been constructed here that

depicts a function by the perturbation of the spacetime in which it is embedded.

There is no explicit visual representation of the function, its source, or its cause.

However, displaying the effect provides an unambiguous representation of the

source. This is intentional and significant.
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Chapter 3

Literature Review

This review is divided into three categories with regard to the type of visualization

technology being addressed: Spatial Dimensions - where the dimensions to be

viewed are treated as distances as in 3D space; Hypervolumes - where ray casting

technology displays a 4D volume in 3-space; and Parametric Data - where a

variable’s value is represented, rather than a distance.

3.1 Spatial Dimensions

Software techniques for viewing four-dimensional objects had been implemented as

early as 1963 when Noll plotted hypercubes with an IBM-7094.[26] In 1965 Noll[27]

animated his earlier work by creating a computer-generated animation of the 3D

projection of a rotating hypercube with a 16mm movie camera. According to Noll,

“Although no actual mental visualization of the fourth dimension resulted from the

computer-generated displays, it was at least possible to visually display the

projections and be puzzled in attempting to imagine the rigid four-dimensional

hyperobject.” In 1978 Banchoff[28] presented a film of a rotating wireframe of a

hypercube at the International Congress of Mathematicians. In 1984, Black[29]
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developed a real-time animation of a multi-colored solid 4D hypercube as a demo

for the Calcomp Prisma[30] workstation.

In 1988, Beshers and Feiner[31] described a real-time implementation on an HP

graphics workstation to rotate and project hypercubes and other 4D objects of

comparable complexity into 3D. The implementation used W -axis near and far

clipping planes to select a viewable 4D “hyper slice” orthogonal to the W -axis.

3-Flat intersection with a 4D object boundary, as described in Appendix B, was not

implemented. In 1990, Feiner and Beshers explored interacting with 4D objects as

nested heterogeneous coordinate systems[32].

Banks[33] also explored 4-space interactions via manipulation of 2D surfaces in 1992

in which he described 4D projection, the transparency performance challenge1, and

the binary space partition (BSP) challenge2 for planes in 4-space. Both of these

challenges were addressed by Chu, et al.[34] in 2009 with the GL4D API. Interesting

questions raised by Banks that will be answered here include “Are there effective

ways to shape, to position, and to display the volume or its boundary interactively?”

and his concern about “..loss of geometric content that transparency produces”

proposing the exploration of 4D silhouettes. Banks acknowledged The Feynman

Lectures on Physics [35, 36, 37] as his inspiration for the physical principles of

illumination of large codimensions in his 1994 paper.[38]

Andrew Hanson has provided comprehensive solutions to many 4D viewing

challenges, not only to 4D geometry, but also 4D lighting. In addition to his

technical contributions of more than 20 papers in the last two decades, Hanson

advocated The Visualization Principle[39] as a working definition of success: “A

useful data depiction must allow the viewer to reconstruct a consistent and relevant

model of the original data”.[39]. Hanson stated in 1992 “..nor do we know that the

1Transparency challenge - expensive in computational resources and impacts interactive per-
formance.

2BSP challenge - a codimension one construct, a 3-flat, is required to divide a 4-space, whereas
a 2-flat cannot.
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desired interpretation of the images is cognitively feasible within the limitations of

the human intellect”.[40] In 1993, he worried that “Non-convex or multiple objects

would need additional attention to avoid the display of scene portions that should be

occluded”.[41] The Spaceslice implementation described here solves this problem in

real-time. While Lange and Dickson sculpted into plastic certain complex curves

proposed by Hanson in 1990 and 1991, these models are not representative of higher

dimensional objects in the same sense that Spaceslice’s plucked 3D objects are

representative of 3-manifolds. Hanson also explored higher dimensional geodesic

interpolations and splines. The Meshview program was adapted by Hanson’s group

to viewing two-dimensional manifolds in the fourth dimension in the late 1990’s.[42]

Future plans included interactive 4D rotations as currently performed by Spaceslice.

Like Lonsway[43] in 2002, Hanson was also interested in multi-modal 4D exploration

including haptics as evidenced by a 2005 paper[44] describing the exploration of a

two-torus in four-space similar to the two-torus of Figure 6.3. More recently, Chu,

Hanson, et al. in 2009 described their GL4D[34] API that adapts a state-of-the-art

rendering pipeline to hypervolume ray-casting. Their future plans include adapting

contemporary video game haptic technology and time-dependent data to 4D

visualization.

In their survey of multidimensional multivariate visualization[45] in 1997, Wong and

Bergeron concluded that “We must learn what approaches actually lead to more

accurate results, enhanced productivity, and better understanding of the underlying

science.” This theme has been repeated consistently as noted in the summary,

below.

4D illumination models were also explored by Hanson[40] in 1992 and by Banks[38]

in 1994 by extrapolating 3D smooth shading using the surface normal into a

strategy using the hyperplane equation whose coefficients were constructed from the

minors of the determinant as described in Appendix B, Derivation of Intersection of
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Figure 3.1: Depiction of 6D Calabi-Yau Space
An example of the Direct to 2D Technique.

a Line with a 3-Flat. Banks also used Kajiya’s teddy bear fur[46] to display 3D

vector fields. In his conclusions, when Hanson states, “We can argue that some

intellect, possibly superhuman, can in fact understand the 4D images we produce”,

he is implying that there is enough information in the 2D images to unambiguously

reconstruct the 4D model.

In 1993 Hanson & Cross[41] suggested thickening as a visualization tool, for

example to extrude lines to tubes and planes to 3-manifolds “...by adding a circle to

each point of the surface’s normal plane...”. As stated by Hanson & Munzer[47] in

1994 and quoted in the next chapter: “Mathematical visualization is the art of

creating a tangible experience with abstract mathematical objects and concepts”.

Graphics Gems IV [48] contains a compendium of 4D formulas and insights also by

Hanson[49].

In 1999 Hanson proposed to add “interactive 4D rotations and volume rendering of

3-manifolds embedded in 4D” to the Meshview 4D package developed at University
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of Illinois at Urbana-Champaign.

In 2000, D’Zmura[50] of UCI created a 4D virtual world and reported, “.. we have

chosen to represent boundaries using a set of geometric primitives. This is the sort

of representation that has proven so successful in 3-D computer graphics.” He

proved that his test subjects could indeed learn to find their way around in the

4-space maze of corridors.

McGuigan stated in the conclusion of his paper on viewing 4D Quantum Chromo

Dynamics (QCD) data[51] in 2000 that, “As there are many possible slices[,]

animation can help to choose the interesting ones. The projection approach shows

all the data at once. Rotating through the data uncover features obscure in a

particular four dimensional view.” In future work, he wished to include 5D effects

to simulate parity, and the ability to visualize topological defects, as well as

real-time steering of calculations.

Lonsway[43] in 2002 suggested the use of perceptual manifestations via additional

sense modalities such as echoes, breezes, smells and temperature to express space.

In his 2004 paper on multiple view visualization of higher dimensional data[52],

Tomov used projection to reduce dimensionality. Tight coupling among the different

viewports and resultant coordinated exploration allowed the authors to extract

insights about the data.

In 2007, Elmqvist[53] while studying 3D occlusion noted that it was necessary for

“..users to be aware of occluded content without compromising visual content and

imposing a high cognitive load on the user.” He recognized that a multiple-viewport

strategy wherein the various viewports allow augmented views of user selected

targets would improve user comprehension. Spaceslice implements the strategies

recommended by Tomov and Elmqvist, as will be shown later.

In his Views on Visualization2006 van Wijk made a few interesting observations, as

follows. Visualization research can be considered a science in its own right, and that
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Figure 3.2: 4D Hypervolume Depiction of Hypertorus

elegance and beauty are worthy goals for this new science, as are effectiveness and

efficiency. Visualization research should also lead to predictive theory and laws.

Aguilera[54] in 2008 reiterates a quote (from Allen’s Human Spatial Memory:

Remembering Where[55] of 2004) questioning “how the increasing use of videogames

and more sophisticated virtual environments will change the way people think about

and remember space and place.”

3.2 Hypervolume Visualization

In 1998 Bajaj decided to abandon rendering and explore hypervolume visualization

to discover a “dimension independent viewing system that scales nicely with the

geometric dimension of the dataset and that can be combined with classical

approaches like isocontouring and animation of slices of nD data.”

Most recently in 2009, Chu, Fu, Hanson, & Heng[34] combined nD volume rendering

with nD lighting as shown in Figure 3.2.
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3.3 Parametric Dimensions

In the domain of parametric space, Asimov[56] described a method of automatically

“touring” a parametric space with a 2-frame (2D view plane).

Wegman[57] provides powerful pragmatic real-world results for nD visualization

strategies for 4 through 68 dimensions and 22 to 280,000 data points. Tools

included grand-tours, scatter plots and parallel coordinates.

Artero[58] in 2004 explored clustering of large multi-dimensional data using parallel

coordinates.

Tomov[52] explored non-spatial data in a multi-view spatial visualization

performing dimensional reduction by projection and intersection.

The unnaturalness of these non-intuitive parametric space strategies places an

unnecessary cognitive load on the user attempting to interpret the data. Providing

an analog to a real world experience, such as our experience with the size and shape

of 3D objects, is preferred.

3.4 Summary of Researchers’ Published

Comments
Hitching our research to someone elses driving problems, and

solving those problems on the owners terms, leads us to richer

computer science research.

- Fred Brooks, PhD[59]

Following fifty years of research from Noll’s expression of puzzlement[26] to

Hanson’s The Visualization Principle[40] leads to the objective of this project: to

provide an ability for the users to interactively and tangibly manipulate and explore

the puzzling aspects of the extra dimensional models before them.

Geometric primitives [50] have been used to shape, to position, and to display the
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volume or its boundary interactively [33] using the data structure defined in

Section 6.

McGuigan’s animation statement[51] adds support for the feature set of all three

implementations as discussed in sections 2.3, 2.4 and 6, specifically the animated

rotating intersection option as shown in the frames of the sliced 3-sphere in

Figure 6.8 and the sliced 3-torus in Figure 6.9.3

Research into computer graphics and visualization cannot exist in a vacuum. Rather

it exists by, and for, its relation to its sister sciences. An algorithm needs an

implementation, and an implementation needs an application. Developing strategies

to interactively visualize the theories of relativity is a challenge interesting enough

to motivate these algorithms.

While speaking of an application specific visualization, Hanson[62] recommended

that the interesting physical effects be incorporated into the visualization “.. in

ways that are intuitive and qualitatively correct without being obtrusive.” This

concept can be extended to extra dimensions as well as relativity. Furthermore,

Weiskopf[63] offered “.. intuition is particularly improved by establishing a tight link

between the user and the visualization environment. Therefore, real-time

applications and interactivity should be employed whenever possible”.

3Videos of the animations may still be available either on the accompanying Compact
Disc (CD) or on the internet[60, 61] at http://visualization.com/videos/uci/figure-6.8.mov and
http://visualization.com/videos/uci/figure-6.9..mov
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Chapter 4

Problem Definition

“Mathematical visualization is the art of creating a tangible

experience with abstract mathematical objects and concepts”

Tamara Munzer, PhD[47]

Visualizing and exploring the shape of objects of dimension greater than three has

been a thorny issue for generations. Prior to the research here, there has been no

easy way to explore models of extra dimensions.

For a solution to be comprehensive it is required to include: An efficient internal

data representation and associated display technology that can support interactive

frame rates;1 An intuitive extra-dimensional (ED) Graphics User Interface that can

seamlessly support 4D, 5D, and higher dimensions; A view methodology that can

seamlessly display 4D, 5D, and higher dimensional objects. An easy to code

Off-The-Shelf Open API would be a perk.

Given the success of interactive viewing of 3D models, 3D model animation,

videogames and virtual reality, it is reasonable to adapt that technology to viewing

objects of extra dimensions.

Consider, one can remember the result of a 3D operation such as catching a ball, or

slicing an apple. One can also extrapolate those operations to similar activities such

1Interactive frame rate values acceptable by the US military are defined in MIL-STD-
1472F [64] and shown in Figure 7.9.
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as bouncing a ball or slicing a pear, or even slicing a donut. These 3D

manipulations are considered to be intuitive, perhaps because one remembers a

history of similar activities to which the proposed manipulation can be compared.

Unlike remembering a dynamic 3D event, like catching ball, or slicing an apple,

envisioning the result of manipulation of 4D events in extra dimensions is not

intuitive. While most of us can navigate a multi-storey building or catch a ball, few

of us have had experience negotiating a 4D maze[65] or observing the shape of a

sliced 4D object. Even an activity as simple as examining a 3D ball has no

empirical counterpart in 4-space.

Envisioning extra dimensions, unlike imagining a 3D dynamic event such as

catching a ball, cannot be intuitive without comparable experience. One can

speculate that experience with manipulating extra dimensions may enhance one’s

intuition about objects of extra dimensions.

How does one go about manipulating 4D objects in higher dimensions? As noted in

1.3 - A Brief Introduction to 3D Graphics, a well developed 3D CAD technology

already exists. Furthermore, many users are sufficiently facile with the technology to

lend credence to the claim that interactive manipulation of a mathematical object

via computer technology, such as click & drag for example, gives the user a tangible

experience with the object in question. A tangible experience is the ultimate goal.

Therefore, devising a mechanism to convert a 4D object into a 3D environment for

handoff to a CAD-like or video-game system is the penultimate objective.2

The challenge is to convert a 4D object in 4-space into a representative 3D model

in 3-space. We shall identify a 4D model in the same manner as we would identify a

3D model. If it looks like an apple, it is an apple. If it looks like a sliced donut, it is

a sliced donut.

2A user study is not necessary to demonstrate that 3D CAD is an effective 3D model visualiza-
tion and manipulation strategy. A quarter century of industrial adoption is adequate proof of the
technology’s efficacy. Discovery of better strategies is left as future work.
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The external shape of the object is characterized by the convex hull. In the case of a

3D apple, it is the appearance of the shape of the 2D surface encompassing the 3D

apple that identifies the object as an apple. For the sliced donut, it is the

symmetries of the cross-section of the object, the slices, that characterizes the

object as a donut.

The proposed solution should also include the capabilities of the prior work as given

below in sections 4.1 and 4.2.

4.1 Viewing: 4D Spacetime

If the four dimensions are considered to be a 4D spacetime, rather than a spatial

4-space, then there are special challenges with respect to classical retarded time.

That is to say that the light from the points of the object furthest from the

Point-of-View (POV) will take longer to arrive at the viewer than points closer to

the POV. This effect can be detected with large objects at sufficient distances even

at non-relativistic velocities.

If relativistic objects in spacetime are to be viewed accurately, then retarded time

must be taken into account. The representation of the 4D object should emerge

dimensionally reduced to 2D, and a physically correct view of classical aberration

should emerge from the method. There are geometrical issues that must be

addressed in order to view the object as perturbed by relativistic effects.

4.2 Exploring: the Warp of Space

How can one view distortions, warps, and curves in the very shape of space itself?

Space and spacetime can be non-Euclidean, and dynamically so. The challenge is

compounded since it would be of interest to see the dynamic relationship between

voxels in space, and hyper-voxels in spacetime and extra dimensions. More

56



information can be gleaned from the differentials of the voxels’ spatial relationships

- that is not only their warps, but their rates of warpage to the second and third

orders. In a spacetime predicted by the Theory of General Relativity this would

provide information about the magnitudes and directions of matter and energy

flows.

A fourth dimension should be able to be treated as temporal or spatial, and

displayed accordingly.

4.3 Exploring: nD Models in n-Space

The challenge to be addressed here is the creation and display of nD models.

Firstly, a strategy must be defined to efficiently encode an nD model or n-manifold

with boundary in an easy to use database from a mathematical, programmatic, or

interactive description.

Secondly, a method must be selected to display the database model on the desktop

computer ultimately so as to make it tangible for the user. There user should be

able to see the total extent of the nD model in each of its dimensions so as to be

able to grasp its size and shape in nD. Given that the computer has a 2D viewport,

a technique must be devised to display it in a form comprehensive, comprehensible,

and memorable to the user.

The user should be able to explore the object’s shape in all its dimensions,

interactively.

4.4 Manipulating: mD Models in n-Space

In order to manipulate an mD model in extra dimensions, we must have a Extra

Dimensional graphics user interface (ED-GUI) of dimensionality equivalent to the

dimensionality of the n-space in which the mD object is embedded where m ≤ n.
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This implies that an ED-GUI is required even for manipulating a 2D object in all

possible degrees of freedom in 4-space, as well as for a 4D object in 4-space.

It should be possible for the user to manipulate the mD model in some manner in

order to explore the interior of the mD model’s n-space. A method must be devised

to provide an interactive tool to the user that enables penetration as well as

exploration.

A useful feature would be the ability to select and export a 3D object to a file for

editing with a conventional 3D CAD or 3D viewing package. For example, an object

can be exported to a .ply file for importation by a PLY file viewer.
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Chapter 5

Approach and Contributions

Intelligence Amplification is better than Artificial Intelligence

- Fred Brooks, PhD

The research here describes and demonstrates a mechanism for the visualization,

exploration, and manipulation of extra dimensional models on the personal desktop

computer. Provided here are a system of algorithms to create, view, and manipulate

four-dimensional models in both Euclidean four-space and Minkowski spacetime.

Furthermore the foundation is laid for algorithms to manipulate yet higher

dimensional mathematical models in non-Euclidean spaces. Since these mechanisms

are a proof-of-concept rather than a marketable product, certain well-considered

shortcuts have been taken to reduce the traditionally labor intensive software

development time.

5.1 Multi-Aspect Viewer Approach (Spacegrid)

A 4D lattice provides views of models of an empty static or an empty dynamic

curved or warpable non-Euclidean 3-space. In the latter case, the position of a

perturbing object can be inferred from the relative perturbation of the 3-space itself

as indicated by the perturbation of the lattice points. The realtime feature allows
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the user to introduce dynamic variation in the display for exploration and

comparison. The implementation is easily expanded into a 5D lattice representation

of five-space, and perhaps more, limited only by memory and compute power.

This strategy also provides visualization of retarded time effects that are critical to

relativistic visualization and inherent in the raytracing implementation, but at a

level of performance not possible with contemporary raytracing.

The hypervoxels in n-space can be represented by points in an nD dynamic lattice

and easily sliced parallel to the extra dimension to perform a simplistic dimensional

reduction. Furthermore, the points’ position in n-space can be dynamically

perturbed to represent a warp in space as described as an approximation to the

Theory of General Relativity or other theoretical physical force.

This fourth dimension can be treated as temporal or spatial, and displayed

accordingly.

It should be possible to explore by using multiple viewports, each of which shows an

alternate Aspect of the n-space, and rotating the 3-space, n-space, or the

point-of-view (POV) through the space using the mouse and a click & drag

paradigm.

5.2 Projection & Intersection Approach

(Spaceslice)

In this approach the geometric model of an mD object is created and then loaded

into an nD workspace for viewing. The viewpoint is managed by the user through

an Extra Dimensional Graphics User Interface (ED-GUI) designed for use with mD

models in n-space. For this implementation, 4 ≤ m ≤ n ≤ 5.

A description of a GUI for extra dimensions and a description of the construction of

the hyperobject will be followed by a discussion of the two dimensional reduction
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Figure 5.1: The 4D GUI

techniques used here: projection and intersection.

5.2.1 ED-GUI: Extra Dimensional Graphics User Interface

An nD Graphics User Interface (ED-GUI) allows the user to rotate any axis into

any other axis of the nD object, and to move (translate) the nD object along any

axis. The ED-GUI supports rotation in any viewport by a left-click1 in any

viewport, and a drag2 of the view up or down, and left or right. The viewed object

rotates to follow the cursor. Rotating the large upper-left viewport causes all

viewports to rotate or translate in concert. Right-click and drag will translate the

object in the viewport to follow the cursor. The large upper-left viewport addresses

all the viewports simultaneously as did the rotation operation. The user can thus

1Left-click - place the cursor on the object and click the left mouse button.
2Drag - drag the cursor with the mouse while not releasing the mouse button.
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reposition any view via rotation or translation.

The nD ED-GUI is also required to allow the user to specify the nD orientation and

nD position of the intersecting hyperplane in the model’s n-space. A 3D grid-like

icon visible in the right column of Figure 5.1, has been created as a 3D cursor to

represent the orientation and position of the three-flat in hyperspace. This three-flat

icon is depicted in each of the viewports by the Aspects appropriate to that set of

dimensions. For example, in a viewport where the Z axis had been compactified so

that only W , X,& Y are visible as in the top-right viewport of Figure 5.1, the

three-flat icon consists of only its X & Y dimensions in this orientation, and so

appears as a gridded plane in the XY 2-space with no extent along the W -axis. In

the lower-right WXZ viewport the three-flat icon consists only of its X & Z

dimensions, and is compactified along the W -axis, as depicted by the gridded 2D

plane in XY 2-space.

Each view of the three-flat icon will allow the user to click & drag the icon through

the displayed axes within the convex hull, and hence reposition the intersecting

three-flat hyperplane at any orientation or position within the n-space, effectively

providing the hyperplane with n+ (n2 ) degrees of freedom3.

The interactive implementation of this strategy gives the user a tangible experience

with the 4D model. The user shall be able to explore the object by interactively

repositioning the 3-flat and observing the resultant model of the slice in 3D.

5.2.2 nD Object Definition

A 4D object , or a closed compact three-manifold describing a 4D object in a closed

finite metric Euclidean 4-space, is intersected by a three-flat and the intersection

displayed as a two-manifold in three-space. Similarly, a 5D object in five-space can

be intersected and the intersection displayed as a three-manifold in four-space, then

3Degrees of Freedom (DoF) - one translation for each axis (n), plus one rotation for each
unique pair of axes ((n

2 )). 3D requires 6 DoF and 4D requires 10 DoF
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again intersected to yield a two-manifold in three-space. The implication is that the

algorithm can be extended to yet higher dimensions, as processing resources become

available. The details are described in Section 6.2.2.

5.2.3 Exploration: Dimensional Reduction by Projection

onto Hyperplane

In lay terms, in this and the following approach, a model of an nD object is created

as described above and displayed via dimensional reduction in 3D. Multiple

viewports display different aspects of the nD model. The model is dimensionally

reduced by an orthogonal projection onto a user positioned and oriented 3D

hyperplane or 3-flat. The resultant 3D convex hull is displayed. The user shall be

able to explore the object by interactively repositioning the 3-flat and observing the

model in 3D. The rendering of the nD object shall be accomplished by rotating the

object into the hyperplane’s space, projecting into the 3-flat’s 3D space along the

3-flat’s orthogonal axes, then de-rotating the resultant 3D object back into the 3D

view frustum. The matrix composition is described in detail in Section A.

The view of the object shall be that obtained by the 3D observer within the

Euclidean 3-flat. Unfortunately performance is impaired since the projection

operation causes all the object’s vertices and connecting edges and faces to be

rendered, although only the outer vertices and faces are visible.

5.2.4 Manipulation: Dimensional Reduction by Intersection

with Hyperplane

In this as in the previous approach, the mD object, an m-manifold with boundary,

is specified by defining its closed compact boundary via a pure simplicial

(m-1)-complex. The mD object is then dimensionally reduced for display in 3D via
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projection. Multiple viewports display different Aspects of the mD model. The 4D

model is dimensionally reduced by both projection as described above, and

intersection with the same user positioned and oriented 3-flat hyperplane. The 3-flat

slices the 4D object and displays the 3D slice to reveal heretofore hidden internal

3D structure. The mD model will be sliced by intersecting the (m-1)-simplices with

an (m-1)-flat. This process is repeated for higher-dimensional objects for m > 4

while decrementing m. For m = 4, the manifold’s bounding 3D tetrahedra are

intersected with the 3-flat to yield bounding 2D triangles describing the closed

compact 2D surface of the revealed 3-manifold with boundary.

The resulting 3-manifold with boundary (2-manifold) can then be manipulated in

the usual ways with a conventional 3D CAD system, or rotated and viewed with the

embedded click & drag 3D viewer. The user can thus drag the 3-flat through the

model to explore the internal structure of the 4D (or higher) model yielding a

tangible 3D experience as defined above in Section 4.

An additional feature to enhance the tangibility of the object will be the ability for

the user to export any of the resultant plucked 3D models to a 3D CAD system for

visualization and editing.

5.3 This Research’s Contributions to the Art

This research has seamlessly merged novel approaches to create a comprehensive

solution to the interactive visualization challenges as follows.
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5.3.1 A Computationally Tractable Method to Explore

Euclidean Four-space

Euclidean four-space (and five-space) is probed with a 3D hyperplane to reveal and

extract 3D structure hidden within the higher dimensional spaces in realtime.4

A new simple data structure and algorithm yields realtime performance with 4D

models, and near realtime performance with 5D models. In both cases, the

performance enhances the generation of animated videos on the personal computer.

The data structure and algorithm are configured to allow for the implementation of

multi-processor multi-threaded strategies. More threads will enable more interactive

extra dimensions.

5.3.2 Making the Intangible Tangible

Simple and natural interactive metaphors - rotate, pan, and zoom via ubiquitous

click & drag - allows the exploration and manipulation of extra dimensional objects

to become tangible to the user in the same manner that an engineer’s 3D CAD

construct becomes tangible to the designer. The capability of being able to export

the “plucked” 2-manifold as a 3D object to a 3D viewer or third-party CAD package

lends an accessibility and reality to the 3-manifold heretofore unavailable to the user.

5.3.3 Multi-Dimensional Viewports

The common CAD type viewport has been adapted to the visualization of higher

dimensional objects via multiple viewports, each displaying an alternate set of

dimensions or aspects of the same extra dimensional object.

The uncluttered attractive views and the easy-to-use click & drag Graphics User

Interface reduces the cognitive load on the user promoting creative thinking and

4Realtime as defined by MIL-STD-1472F[64] and shown in Figure 7.9.
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problem solving.[63]

5.3.4 Non-Euclidean n-Space

Displaying projections and intersections of non-Euclidean n-space is an inherently

difficult problem. It can be greatly simplified by approximating the curve, warp and

distortion with n-simplices at some arbitrary resolution. Including the prior work of

the Spacegrid implementation described in Section 2.4 could provide projections and

intersections of non-Euclidean n-space at an additional computational complexity of

O(V4D). The individual vertices could be perturbed during the vertex duplication

phase of the intersection process. Furthermore, the resultant simplices could be

colored to represent the value of their first, second, or third order derivatives as was

the Spacegrid display. Thus the foundations for a computationally tractable method

to explore a dynamic non-Euclidean n-space can be established here.
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Chapter 6

Solution - Plucking an Aspect

“The frank realization that physical science is concerned with a

world of shadows is one of the most significant of recent advances.”

Sir Arthur Stanley Eddington

6.1 Introduction

Embedded within a 3D sphere (or 2-sphere) are an infinite number of 2D circles (or

1-spheres). A circle can be extracted from the sphere by slicing the sphere with a

plane as in Figure 7.5. Topologists can describe this result mathematically for

3-space:

codim(sphere ∩ plane) = codim(sphere) + codim(plane) (6.1)

dim(sphere ∩ plane) = 1-manifold

In like manner, a 4D sphere (or 3-sphere) contains an infinity of 3D spheres (or

2-spheres). Extracting the 2-sphere with a 3D hyperplane (3-flat) can be described
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mathematically for 4-space as:

codim(3-sphere ∩ 3-flat) = codim(3-sphere) + codim(3-flat) (6.2)

dim(3-sphere ∩ 3-flat) = 2-manifold

Presented here are a fundamental data structure and attendant library of tools to

define and display an n-dimensional (nD) model by describing its (n-1)-dimensional

bounding simplices. The Test-Fixture as described and demonstrated here1 can

both generate the bounding three-simplices bordering a mathematical

four-dimensional (4D) model at a specified level-of-detail; and allow the user to

interactively explore this three-manifold in real-time by selecting three-dimensional

(3D) projections and intersections while viewing the resultant 3D object just as

does an architect, engineer, or video gamer.

6.2 Implementation

The design goal of interactivity was met by transforming the intersecting

hyperplane rather than transforming the database of vertices, and by using an

infinite hyperplane for intersection thus relieving the software of the necessity of

clipping the nD objects.

Given that an m-manifold in n-space, consisting of s simplices, will require O(s)

vertices2 and n components per vertex, O(s× n2) MAC’s would be required to

transform the object’s s vertices by the n× n matrix described in Section 1.4.1.

Furthermore, each of the s vertices would have had to have been clipped against 2n

clipping planes for an additional O(s× n) operations.

1While the Test-Fixture was implemented in seven Euclidean dimensions, and is extensible to
yet more, only four dimensions are described and demonstrated here.

2As with a 2D triangular strip bounding a closed compact connected 3-manifold, a 3D tetrahedral
strip bounding a closed compact connected 4-manifold will require one vertex for each additional
simplex connected to the initial simplex.

68



However, only one vector×matrix multiplication is required for the hyperplane

equation to transform the 3-flat, and no clipping operations. Only the vertices of

the plucked 3D object need be transformed and clipped for viewing, and these 3D

vertices are amenable to interactive manipulation in the usual manner by the

OpenGL 3D package.

The data structure is described first followed by a description of the Test-Fixture

within which it is implemented.

6.2.1 Data Structure

In conventional 3D computer graphics, whether video games or computer aided

design, 3D objects are typically described by their bounding two-dimensional (2D)

faces. For example, a tetrahedron could be graphically defined by its four bounding

triangular faces. The four bounding 2D faces comprise an approximation to a

compact two-manifold3 and the enclosed 3D volume is a three-manifold with

boundary.4 In like manner, a 4D object can be approximately defined by its

bounding three-manifold of 3D hyper-faces5 and would be characterized as a

three-manifold[67].

Since the shape of an m-manifold with boundary can be described by its bounding

(m-1)D hyper-faces, and the (m-1)D hyper-faces can be tesselated by

(m-1)-simplices, then the mD object can be described by a hyper-surface of

adjacent (m-1)-simplices.

The fundamental data structure element is the m-simplex or m-cell, stored as a list

3Compact Manifold - It should be noted that the term “compact manifold” often implies
“manifold without boundary”, which is the sense in which it is used here.[66]

4Manifold with boundary - is a manifold with an edge - i.e. a 2-manifold with boundary
is homeomorphic to a disk where the bounding circle is the edge and a 4-manifold with boundary
would be homeomorphic to a 4D ball where the 4D sphere would be the edge.

5hyper- when prefixed to a geometrical term, refers to an extrapolation from the common geo-
metrical object into a generic dimensionality. For example an infinite hyperplane would indicate a
co-dimension one isometric object of infinite extent. A hypercube in the context of four-space would
indicate a 4D cube, while in a 5-space context would indicate a 5D cube, yet in a 2-space would
indicate a square.
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Pseudo-Code of Sample Data Structures

struct V ec7 { // 7D double precision vector
double t, x, t, z, w, v, u; // 7 components of vector

};

struct Object { // Linked list and OpenGL color info
OBJ TY PE objType; // Triangle, Tetrehedra
Material material; // OpenGL material color/lighting info
Object ∗next; // Link to next singly linked-list object

};

struct Triangle : public Object { // 2D Triangle Object of 3 vertices
vecArray ∗ V erts;
int iA, iB, iC; // Indices of 3 vertices into ∗ iV ectors array

};

struct Tetrahedron : public Object { // 3D Tetrahedron Object of 4vertices
vecArray ∗ V erts;
int iV ert[4]; // Indices of 4 vertices into ∗ iV ectors array

};

struct vecArray {
int vecLen; // Number of used entries
int maxLen; // Allocaed array size
int ∗fixed; // flags and counts for sums & average
V ec7 ∗vecP tr; // The 7D vectors
double fClose; // Used to merge shared fClose vertices

};

Figure 6.1: Structures used to slice 4D tetrahedra into displayable 3D triangles.
The Tetrahedron is sliced into one or two Triangles. The Object structure contains the lighting

model data required by OpenGL. One 7D iVectors vertex array is shared by all 4D objects and a
second is shared by all the sliced 3D displayable objects. Vertices of adjacent nD simplices are

identical, so most vertices are shared.
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of (m+1) vertices of n components in Euclidean n-space (En), where n ≥ m. A list

of all the unique nD vertices is maintained as an indexed array (vecArray in

Figure 6.1) in order to minimize vertex transforms and memory manipulation. This

is discussed in Section 6.2.2 on page 72.

Data Complexity

The fundamental element of this data structure is the simplex which contains

(m+1) vertices. A vertex in n-space requires n components. A connected closed

compact m-manifold (pure simplicial m-complex) built of S bounding simplices in

n-space will require storage of S ∗ n ∗ (m+ 1) components. The storage requirement

of the data structure for an mD object in n-space bounded by S simplices can be

restated as O(S ∗ n ∗m) floating-point components or O(S ∗m) vertices.

6.2.2 Test-Fixture

The Test-Fixture consists of two independent modules: the Object-Generator

constructs an mD object in n-space by defining its compact (m-1)D boundary from

(m-1)-simplices; and the multi-point-of-view nD Object-Viewer which constructs

three-dimensional viewable objects from the (m-1)-manifold and simultaneously

displays the object from multiple viewpoints and sub-dimensions in multiple

view-ports via an OpenGL6 based 3D viewer.

The two classes of m-manifolds with boundary demonstrated here were selected for

their interesting four-dimensional symmetries and asymmetries, as well as their

simple and recognizable 3D intersection properties.

6OpenGL - The Open Graphics Library, at the time of this writing, is an interoperable standard
API and library for writing applications that produce 2D and 3D computer graphics.

71



Object Generator

The mD objects (m-manifolds with boundary) are constructed out of simplices7 in

the Object-Generator module from a mathematical description of the hyper-surface

of the m-manifold’s boundary. As used here, a hyper-surface is a

pure simplicial complex formed by joining contiguous (m-1)-simplices at their

shared (m-2)-faces into a closed (m-1)-surface8 in the same way that a 3-manifold

with boundary such as a tetrahedron is created from four mutually adjacent 2D

triangles enclosing the tetrahedron’s inner 3-space. A “closed-up” pure simplicial

(m-1)-complex may be considered connected, compact and without boundary since

all (m-2) edges are shared with adjacent simplices.

Conceptually, the m-manifold is generated by iterating though the 4D (or 5D)

hyperspherical9 coordinates around the mD object’s center, and embedding the

contiguous bounding (m-1)-simplices onto the mD hypersurface. The generation

algorithm iterates around and through the hypersphere’s mD hyper-surface via mD

hyperspherical coordinates which are converted to rectilinear coordinates during

embedding.

The m-manifold’s vertices are generated via parametric functions of hyper-spherical

coordinates and converted to E4 or E5 Euclidean coordinates. The resultant

vertices of the pure simplicial m-complex so generated are then insertion sorted via

a red-black balanced binary search tree algorithm into the vecArray, which is an

indexed list of unique 7D vertices. The Object linked-list of simplices is constructed

of either Triangle data elements with three indices or Tetrahedron data elements

7Simplex creation is described in detail in Section 2.3.2 and in sections A and B of [2]
8Closed surface - “A surface is closed if it is compact, connected and has no boundary; in

other words it is a compact, connected Hausdorff space in which each point has a neighborhood
homeomorphic to the plane.”[68]. This definition will be used, with suitable extension, to describe
the hyper-surface.

9Hyperspherical - A coordinate system in an n-dimensional Euclidean space which is analo-
gous to the spherical coordinate system defined for 3-dimensional Euclidean space, in which the
coordinates consist of a radial coordinate r, and (n-1) angular coordinates.
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with four indices as documented in Figure 6.1. Pentachoron data elements with five

indices were added for 5D boundaries. The m-manifolds are not limited to convex

shapes and need not be simply-connected as demonstrated by the hyper-torus.

Storage and Computational Complexity The number of simplices S for a

specific simplex resolution R increases exponentially with the dimensionality k of

the k-manifold. In the case of an k-cube for example, this would be S = O(Rk)

where R is the number of 1D simplices in the cube’s 1D edge. Consider the

bounding m-manifold surface of the k-manifold where m=k-1. For the bounding

m-manifold of the k-cube, the number of simplices is one dimension lower, and so

Sm = O((Sk)
k−1

k ) or S = O(Rm).

The S simplices are embedded serially in n-space by the object generator resulting

in storage complexity O(m ∗ S ∗ n). The storage is reduced to O(S ∗ n) at the

computational cost O(m ∗ S ∗ n ∗ log(m ∗ S ∗ n)) by using a balanced binary search

tree (BBST) to build and merge vertices that are identical within some ε into an

indexed list. In these calculations, the embedding space n is also the number of

vertex components. The generation and compression procedure needs to occur only

once at object creation time, and will further optimize the future intersection and

display processing by reducing computational complexity from O(m ∗ S ∗ n) to

O(S ∗ n) or to O(S) per view for constant n.

The Hypersphere: 3D two-sphere and 4D three-sphere The first class of

nD object selected is the m-sphere10 where m=n-1, defined as:

Sm = {x ∈ Rn : ‖x‖ = 1}. (6.3)

Just as a 3D two-sphere S2 is described by its bounding two-dimensional surface, so

10Sphere vs. Ball - as used here, a sphere is hollow while a ball is solid, regardless of the number
of dimensions. A sphere is the ball’s bounding hyper-surface.
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is a 4D three-sphere S3 described by its bounding three-dimensional hyper-surface.

The closed hyper-surface boundary of a 3-sphere in 4-space can be modeled as

described by the pseudo-code segment in Figure 6.11.

The Hypertorus: 3D two-torus and 4D three-torus A second class of

n-manifold with boundary demonstrating interesting visual symmetries and

asymmetries is the m-torus where m = n− 1, defined as:

T m = S1 × S1 × ... × S1︸ ︷︷ ︸ ⊆ R2 × R2 × ... × R2︸ ︷︷ ︸
m times m times (6.4)

As shown by (6.3), the one-sphere can use two dimensions for its embedding:

S1 ⊆ R2 (6.5)

Ergo, by (6.4), a two-torus T 2 can span four dimensions while a three-torus T 3 can

span six dimensions.

T m ⊆ R2m (6.6)

Two-Torus If the each of the two S1’s are embedded in the XY and the ZW

planes, then merging these two 2-spaces into a 4-space will create the rather

uninteresting 4D structure as shown in Figure 6.2 when intersected with the 3-flat.

A simple oblique orthogonal projection of the T 2 in R4 onto R3, as shown in

wire-frame in Figure 6.3, can yield a self-intersecting 3D representation of the

two-torus. In the FRONT view, the wire-frame reveals this is an unphysical object

since the surfaces interpenetrate near the dimple at the top and bottom of the
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Figure 6.2: Two-torus in 4D and sliced orthogonal to W by a three-flat
Accompanying video filename figure-6.2.mov. Video ID: TorusI 06m04s33r664t0 hTorus twist-S

three-manifold.

The familiar donut shape of a T 2 torus is the result of mapping of one component of

the four-space R4 torus into the three-space R3 of the observer. In Figure 6.4, for

example, the W component of the (W,X, Y, Z) R4 Euclidean four-space is mapped

onto the X & Y components of the (X, Y, Z) R3 Euclidean three-space as described

by the pseudo-code in Figure 6.12.

Three-Torus The four-dimensional torus or three-torus T 3 embedded in

four-space was selected to demonstrate the capabilities of the Test-Fixture since

certain three-flat cross sections reveal three-dimensional two-tori embedded within

the object as seen in Figure 6.9. As with the three-sphere, the three-torus is defined

by its bounding three-surface.
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Figure 6.3: Two-torus in 4D and projected obliquely onto a three-flat
Accompanying video filename figure-6.3.mov. Video ID: TorusI 06m04s13r664t0 hTorus twist-R

Similar to the two-torus, the components of a T 3 can be mapped to embed the T 3

from R6 (Equation. 6.6) onto R4. For example, labeling the components of R6 as

(X, Y, Z,W, V, U), the components V and a piece of Z are mapped into X and Y ,

while U and the remainder of Z are mapped into Z, as shown by the pseudo-code in

Figure 6.13.

The astute programmer can detect the code for the two-torus enmeshed in the

three-torus pseudo-code shown here.

Object Viewer

The Viewer reduces the n-dimensional object to three-dimensions for viewing with

the interoperable OpenGL 3D computer graphics library. The OpenGL library can
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Figure 6.4: Two-torus embedded in three-space

then provide the ubiquitous three-dimensional viewer functions such as rotate, pan,

zoom, and shade.

Intersection The Transversal Intersection of an (n-1)D hyperplane in n-space

with an (n-1)D simplex can yield an (n-2)D simplex. The intersection of this same

(n-1)D hyperplane in n-space with a closed-up pure simplicial (n-1)-complex can

yield a closed-up pure simplicial (n-2)-complex. The intersection of two transversal

submanifolds of Y is again a submanifold.[69]

codim(X ∩ Z) = codim(X) + codim(Z). (6.7)

In this manner an (n-1)-manifold with boundary can be created from the

intersection of an (n-1)-hyperplane with an nD manifold with boundary. In this

sample implementation as shown in Figure 6.6, a 3D isometric hyperplane of infinite

extent (a three-flat) when intersected with a three-manifold (a closed compact

three-manifold) in four-space will generate a closed compact two-manifold that

bounds a three-manifold with boundary. Likewise, a 3-flat in 4-space intersecting a

1D line can yield a 0D point.

As explained above in Section 6.2.2, the 4D object is described by its bounding 3D

manifold of tetrahedra. If the three-flat of infinite extent is constrained to penetrate

the convex hull of the four-space of the bounding pure simplicial three-complex,
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Figure 6.5: Constructing a Triangle from Intersected Tetrahedral Edges.

then an intersection with at least one tetrahedron must occur.

If two of the non-traversal intersection degenerate cases11 are ignored, a 3D by

three-simplex intersection in four-space will result in the generation of one of three

objects:

1. no object if no intersection occurs;

2. a plane if the three-flat transversally intersects the tetrahedron as in

Figure 6.5;

3. the original tetrahedron if the three-flat and tetrahedron share the same

three dimensions - i.e. a non-transversal intersection which is degenerate.

To visualize the structure of the 3-manifold in 4-space as a sequence of 2D surfaces,

the solution must intersect a 3-flat with this 3-manifold and yield a 2D surface. By

moving the 3-flat, different slices of this 3-manifold are selected. Since this

3-manifold is a pure simplicial 3-complex, it consists of linear simplices. Using this

information the intersection operation can be simplified to performing the

intersection on the edges of each 3-simplex with the 3-flat, and then connecting

these intersection points according to the connectivity of their parent simplex to get

a 2D mesh as depicted in Figure 6.6. The resultant 2D mesh comprises the pure

11Two degenerate cases: A non-transversal intersection of a 3-flat with a vertex will yield a
0D point, while a non-transversal intersection of a 3-flat with an edge will yield a 1D line. These
intersections are unstable or degenerate.
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Figure 6.6: Plucking a Triangular Mesh from a Tetrahedral Mesh.

simplicial 2-complex which will be rendered. A pseudo-code description of this

process is given in Figure 6.14.

Parallel Performance The block diagram in Figure 6.7 identifies in green those

paths appropriate to parallel processing. Since each of the simplex edge intersection

operations are independent, it is possible to implement this algorithm with up to t

threads where 1 ≤ t ≤ s (up to one thread per simplex) to yield a nearly linear

performance improvement of O(n ∗ s/t), assuming trivial per-polygon graphics

engine display times as with contemporary graphics engines. An alternative parallel

approach for a machine with fewer threads would be to implement one thread for

each of the six tetrahedra edge intersection operations. For the latter case the

operations are likewise independent but share the same 3-flat plane equation and

same vertex list.

Projection An (n-1)-dimensional “shadow” or “silhouette” of the n-manifold can

be created from the nD object by projecting the object along an arbitrary vector

orthogonally onto an (n-1)-dimensional viewscreen. In the sample implementation

here, this would be the projection of a four-dimensional object into a

three-dimensional view space resulting in a new three-dimensional object from the

superposition of multiple vertices, edges, and faces of the object’s three-simplices.

Hanson[49] suggests discarding the extra component of the four component vertex
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(set W to zero, for example). The resultant superposition can cause many

redundant graphic operations, but it will project the three-manifold along the W

axis onto the XY Z image-hyperplane. A shadow can be projected along any

arbitrary direction vector by performing a 4D rotation of the W -axis to the selected

direction in n-space and discarding this W component.

Raytracing While not an OpenGL function, the algorithm’s raytracing feature

described in Section 2.3 is included here for completeness to demonstrate the

versatility of this data structure and algorithm.

Raytracing is implemented via a barycentric algorithmic solution to the

lightray-tetrahedron intersection.[2] The barycentric algorithm solves for the

intersection of a line and the 4D object’s hypersurface represented by the

tetrahedra, and then determines the 4D spacetime position within the tetrahedron

where the intersection occurs. All solutions along the ray are considered and all but

the hyper-voxel nearest to the POV are discarded, resulting in a 2D image of the 4D

spacetime as seen from the POV. The resultant pixel is shaded via a conventional

raytracing lighting model as applied to the extruded object’s surface at the point of

intersection.

Visualizing Special Relativity Visualizing the geometric effects of Special

Relativity can be implemented by constraining the reversed lightray to lie along a

negative lightcone in Minkowski four-space.

Parallel Performance Traditional raytracing has lent itself well to parallel

processing where each light-ray is processed independently by one thread. This

strategy is also applicable for 4D or higher dimensional spacetime raytracing.
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System Block Diagram
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Figure 6.7: Test-Fixture System Block Diagram

6.2.3 System Block Diagram

As depicted in Figure 6.7, the Test-Fixture provides the following capabilities:

1. Simultaneous multi-Aspect multi-Point-Of-View viewports;

2. Multi-dimensional graphics user interface via mouse & keyboard;

3. Interactive slice, pan, tilt, zoom and shade viewing;

4. Batch mode animation scripting language via text file.

Green paths in the figure indicate optional parallel multi-thread implementations in

future versions of the Test-Fixture.

Multi-Aspect Points-Of-View As represented by the transform (
⊗

) and

viewport (<⊃) symbols in the right of Figure 6.7, the Test-Fixture supports an

arbitrary selection of possible points-of-view, selection of dimensions, dimension

reduction techniques, and display modes. Sample display screens in figures 6.2 and

6.3 show six simultaneous views of a two-torus in four-space in a Computer Aided
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Design (CAD) type orthogonal viewport format. The right column of three

viewports are dimensionally reduced via projection of 4D to 3D and represents,

from top to bottom:

1. the (W,X, Y ) components of the four-space projected along the Z axis;

2. the (W,Y, Z) components of the four-space projected along the X axis;

3. the (W,X,Z) components of the four-space projected along the Y axis.

This projection strategy provides a complete view of all four dimensions of the 4D

object via a combination of its various 3D shadows or silhouettes. simultaneously.

The left three views are conventional Front, Top, Side CAD views of the

three-dimensional object that is created by the three-flat intersection with a

three-manifold (four-manifold with boundary). Conceptually, the top-left viewport

is a picture of the 3D world within the 3D hyperplane. The four labeled axes in the

left 3D views map to the corresponding (W,X,Y,Z) axes in the four-space. The

relative lengths and angles of the labeled axes indicate the spatial contributions to

the extent of the 3D object created by the three-flat to three-manifold intersection.

If there is no fourth axis label visible, the 3D view is orthogonal to the invisible 4D

axis.

Figure 6.10 offers an alternative CAD format for the display of a four-manifold in

five-space and is described in Section 6.3.3.

Extra-Dimensional Graphics User Interface The intersecting three-flat’s

position and attitude in four-space is indicated by the red grid icon shown in the

three viewports of the right column in figures 6.2 and 6.3, and in the right nine

viewports of Figure 6.10. As depicted in Figure 5.1, the user can rotate the

three-flat by holding down the SHIFT-Key and LEFT-Mouse-Button while dragging

the icon with the mouse. The three-flat can be translated by use of the mouse on

the icon with the SHIFT-Key and the RIGHT-Mouse-Button.
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Interactive viewing The 4D algorithm as implemented is interactive on

contemporary desk-top computers12. The desk-top user can observe the leftmost

three viewports containing the resultant three-dimensional object metamorphose as

the position and attitude of the three-flat intersector of the three-manifold is

repositioned interactively with the mouse and keyboard. Note that interactivity

seriously degrades when 5D objects are sliced. A parallel implementation should

address this degradation.

Animation scripting language Experience with this GUI has shown that while

interactivity is effective for discovering expected and unexpected geometries, a

scripted animation is superior for smooth demonstrations. Hence a scripting

language has been implemented that provides consistent incremental translations

and rotations of the intersecting hyperplane, and provides output of the resulting

three-dimensional intersection display to sequentially numbered files. These files are

then converted by the Linux ffmpeg animation package to create a QuickTime

(.mov) video of the demonstration sequence.

The animation feature was used to generate the sequences of frames shown in the

figures in Section 6.3. Animation sequences are available online via the

Internet[70, 60, 61].

6.3 Examples of Exploring Four-Manifolds with

Boundary

For brevity only a hyper-sphere and a hyper-torus are displayed. Frames of an

animation of these two closed compact three-manifolds in four-space as output by

the Test-Fixture are shown and described below.

12The author’s contemporary desk-top computer is a dual-core 2.6GHz AMDx2 w/ 4GB
under XP-64. The application was implemented as a single thread.
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Figure 6.8: A 4D Sphere sliced eight times along the W axis by a 3D hyperplane.
The sliced S2’s diameter changes with the S3’s diameter

Accompanying video filename figure-6.8.mov. Video ID: hSphereI 04s11r633t0 hSph02-633 sliceW

6.3.1 Slicing a Three-sphere

Shown in Figure 6.8 is a three-sphere of radius 10.0 world-units that has been sliced

by a three-flat orthogonal to the W-axis as one would slice a loaf of bread with a

knife. The knife in this case is a three-flat, an intersecting three-dimensional

hyperplane of infinite extent, stepped along W from +9.6w to -9.6w in eight equal

steps yielding eight three-dimensional plucked slices of a hyper-sphere. The slices

have no W component, thus as can be seen in Figure 6.8, each slice is a 3D sphere of

common experience. But to carry the analogy further, the result of this slicing is

not a slice of bread, but rather the infinitesimal (n-1)D space between the loaf’s

slices. The plucked sphere can be exported as shown in Figure 7.6.

6.3.2 Slicing a Three-torus

Figure 6.9 displays a sequence of three-dimensional plucked slices of a three-torus.

As the three-flat slicer progresses along the W axis from +9.6w to -9.6w in eight

equal steps, the ellipsoid end-cap metamorphoses into a sequence of an oblate genus

one torus whose symmetric axis is collinear with the W-axis, then into a genus two
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Figure 6.9: A 4D Torus sliced eight times along the W axis by a 3D hyperplane
S1 × S1 × S1 → R6 is mapped onto R4 by pseudo-code in Figure 6.13

Accompanying video filename figure-6.9.mov. Video ID: hTorusI 36m05s13r521t0 hTor05I cutWXYZr521p

torus, then into a pair of tori symmetric about the XZ plane. The process then

reverses itself through the same sequence back to ellipsoid end-caps. A genus zero

3D object can thus metamorphose though a genus one configuration into a genus

two then into two genus one 3D objects, and then back again. The plucked objects

can be exported as shown in Figure 7.10.

6.3.3 Slicing A Five-dimensional Object

The data-structure and algorithm are designed such that they can be extended to

allow visualization of objects of extra spatial or temporal dimensionality. While

only two four-dimensional objects were demonstrated here, the algorithm can

display five-dimensional or (4+1)-dimensional objects as shown in Figure 6.10.

Shown here is a 4D closed compact three-manifold homeomorphic to a three-sphere

that has been extruded along the t-axis to yield a three-manifold with boundary

(not closed-up) spanning five dimensions.

The ubiquitous three-sphere is depicted in a (4+1) Minkowski spacetime with a zero

85



Figure 6.10: A 5D Torus Shown in 15 3D Viewports
Col 1: 3D views clockwise: (Front,Side,Top). The remaining views are projections along axis pairs
into 3-space as follows: Col 2:(WX,WY,WZ). Col 3:(TX, TY, TZ). Col 4: (Y Z,XZ,XY ). The

views are described in Section 6.3.3
Accompanying video filename figure-6.10.mov. Video ID:

hSphere7 24sa090702r9t-7 V7.7 hSphereI CutWXYZr9.65p n12-L-null-edit

velocity.13 The object was extended by extruding each of the bounding

tetrahedron’s faces into the T dimension and tessellating each face into three 3D

tetrahedra for each triangular face of each tetrahedron. The result is a 5D object

with boundary constructed of a 3D tetrahedral mesh that may be characterized as a

hyper-wireframe.

Note the rightmost column of Figure 6.10 where the TWX, TWY , and TWZ

aspects are plotted, top to bottom respectively. In this column the XY Z 3-flat,

being a codimension-two structure in TWXY Z 5-space, is depicted as a line, which

is a codimension-two structure in 3-space. This orientation of the 3-flat has no

extension in the T or W dimensions and so is depicted as a one 1D line in the X, Y ,

13A relativistic velocity would require a Lorentz Transform resulting in length contraction and
time dilation which is beyond the scope of this phase of the research.

86



and Z dimensions, top to bottom, respectively.

Note the second column from the right in Figure 6.10 where the WY Z, WXZ, and

WXY aspects are plotted, top to bottom, respectively. In this column, the XY Z

3-flat, shares two dimensions with each of the aspects and so is depicted as a

gridded plane. The top through bottom aspects share the Y Z, XZ and XY planes,

respectively. This column is comprehensive W without T .

The second column from the left in Figure 6.10 depicts TY Z, TXZ, and TWY

aspects, top to bottom, respectively. In this column, the XY Z 3-flat, shares two

dimensions with each of the aspects and so is again depicted as a gridded plane.

The top through bottom aspects share the Y Z, XZ and XY planes, respectively.

This column is comprehensive T without W .

The leftmost column of Figure 6.10 depicts anti-clockwise from the top, conventional

Computer Aided Design (CAD) Front, Top, and Side projected views of the plucked

3D object (two-manifold) resulting from the 3-flat intersection. The intersection of

the 3-flat with the 4D hyper-wireframe results in a two-manifold as given here:

codim(4D ∩ 3D) = codim(4D) + codim(3D) (6.8)

(4D ∩ 3D) = 5− ((5− 4) + (5− 3))

(4D ∩ 3D) = two-manifold

The resultant depiction is the convex-hull of the plucked object projected into

3-space.
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6.4 Observations

A complex three-manifold in Euclidean four-space can be interactively explored in

real-time on a personal computer by visualizing sequential three-dimensional slices

of the four-dimensional model. While only two four-dimensional objects were

demonstrated here, the algorithm and implementation support higher dimensional

objects as is discussed in Section 6.3.3 and shown in Figure 6.10. The

data-structure and algorithm are designed such that they can be extended to allow

visualization of objects of yet greater spatial dimensionality. For an nD object with

s simplices, an (n+1)D object at the same simplex resolution14 will require s
n

n−1

simplices15. However, only one vertex is required for each additional simplex. The

5D example suggests that twice the number of viewports are required for each

additional dimension displayed, depending on the art of the developer. The nature

of the algorithm will allow for a parallel implementation on contemporary

multi-GPU (Graphics Processing Unit) devices.

As suggested by Figure 6.10, the algorithm lends itself to the creation and

exploration of an interactive Minkowski spacetime diagram in four dimensions or

more spatial or temporal dimensions.

14Simplex Resolution is a count of the number of simples required to describe one dimension
of the closed compact connected manifold without boundary.

15An (nD object requires an (n-1)-manifold, hence an n-manifold is required for an (n+1)D object.
Simplex requirements increase exponentially
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Pseudo-Code

initialize prevX, δ
for α = 0 to 2π step δ do

for β = 0 to π step δ do
for γ = 0 to π step δ do

X = radius ∗ sin(γ) ∗ sin(β) ∗ sin(α)
Y = radius ∗ sin(γ) ∗ cos(β) ∗ sin(α)
Z = radius ∗ sin(γ) ∗ cos(α)
W = radius ∗ cos(γ)
nextX = V ec4(X, Y, Z,W )
makeCubeBetweenTwo4DCoordinates(prevX, nextX)
tessellateCubeTo6Tetrahedra‡(prevX, nextX)
prevX = nextX

Figure 6.11: Generate a three-sphere bounding surface in four-space
tessellateCubeTo6Tetrahedra‡ - a description of the tessellation of a cube into six tetrahedra is

shown in [2] by Figure 2 and accompanying text.

Pseudo-Code

initialize prevX, δ
for α = 0 to 2π step δ do

for β = 0 to 2π step δ do
X = radius ∗ sin(α)
Y = radius∗ cos(α)
Z = tube ∗ sin(β)
W = tube ∗ cos(β))
nextX = V ec4(X +W ∗ sin(α), Y +W ∗ cos(α), Z, 0)
makeSquareBetweenTwo3DCoordinates(prevX, nextX)
tessellateSquareTo2Triangles(prevX, nextX)
prevX = nextX

Figure 6.12: Generate a two-torus bounding surface in three-space
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Pseudo-Code

initialize prevX, δ
for α = 0 to 2π step δ do

for β = 0 to 2π step δ do
for γ = 0 to 2π step δ do

X = radius∗ cos(γ); Y = radius∗ sin(γ); // S1
0

Z = depth ∗ cos(α); W= depth ∗ sin(α); // S1
1

V = tube ∗ cos(β); U = tube ∗ sin(β); // S1
2

x1 = X+(V+Z ∗ cos(β)) ∗ cos(γ)
x2 = Y+(V+Z ∗ cos(β)) ∗ sin(γ)
x3 = (U+Z ∗ sin(β))
x4 = W
nextX = V ec4(x1, x2, x3, x4)
makeCubeBetweenTwo4DCoordinates(prevX, nextX)
tessellateCubeTo6Tetrahedra(prevX, nextX)
prevX = nextX

Figure 6.13: Generate a three-torus bounding surface in four-space
Two different three-torus shapes can be generated by swapping the x3 and x4 components.

Pseudo-Code

Perform interactive GUI directed 3-flat 4D matrix transforms

initialize OpenGL 3D display list
for each Tetra in 4D Object do

for each edge in Tetra do
intersect edge with 3-flat

build a polygon from resultant vertices
tesselate polygon into 3D triangle(s)
append 3D triangle to OpenGL 3D display list

for each 3D triangle in new object′s 3D display list do
perform interactive GUI directed viewing transforms

Figure 6.14: Reveal three-dimensional slice in four-dimensional model
Intersect 4D Model with 3D hyperplane.
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Chapter 7

Results and Evaluation

Delays of longer than a few seconds [by the system] can

result in the disruption of thought and short term memory

for the next planned action(s).

- C. Marlin Brown [71]

As specified in the opening Section of this dissertation, the objective is to obtain a

clear comprehensive and representative view of a higher dimensional object,

specifically of a closed compact 3-manifold bounding a 4D object. The three

operations of 1) intersection, 2) 4D to 3D dimensional reduction, and 3) the

multiple POV’s, must be performed in less than a few seconds in order to be

interactive, or at a rate of better than 0.25 frames per second.

7.1 Overview

7.1.1 Stage One - Raytracing Spacetime

The first stage explored the visualization of a known physical four dimensional

phenomena, the apparent effects on the visualization of the geometry of an object

moving at a relativistic velocity with respect to the observer: Special Relativistic

Visualization. This experiment, described in Section 2.3, showed that certain
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Figure 7.1: Example Multiple Points-of-View on 3D CAD Workstation

technologies developed specifically for the implementation were both effective and

delivered accurate visualizations as predicted by Special Relativistic theory. These

technologies included: a data structure to approximate the geometric shape of a

3-manifold in 4-space extruded from a 2-manifold in 3-space describing a 3D model

of a 3D object with a velocity with respect to the camera; a Barycentric algorithm

crafted to retrieve the color for a pixel on a 2D image plane from within the object’s

4D spacetime 3-manifold. From this effort it was determined that animation, along

with providing a conventional mirror to reflect an additional view of the object back

to the camera as shown in Figure 2.9, were effective visualization strategies, and

were indispensable to view clearly unambiguous geometrical information about the

model. In addition it was found that introducing additional viewports displaying

alternate points-of-view of the same test case as shown in Figure 7.2 provided more,

and in some cases necessary, information about the physics and geometry of the

visualization.

Figure 7.2 is an example of this point. The viewports show non-relativistic,

relativistic, and top-down situational views from left to right, respectively. Each
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viewport is a visualization of three columns of colored dashed lines moving towards

the camera on the left, stationary in the center and moving away from the camera

on the right. The leftmost viewport shows a non-relativistic visualization, the center

viewport visualizes the dashed lines moving relativistically, while the rightmost

viewport depicts the situation from a point-of-view directly over the moving dashed

lines without any relativistic or delayed signal effects.

The raytracing algorithm’s performance precluded interactivity, but the method was

necessary for depicting the delayed signal propagation. To address this challenge an

animation capability was introduced to provide the user with additional depth cues

and a sense of continuity as the camera smoothly progressed from view to view. The

Test-Fixture allows the sequence of .ppm frames to be converted to .mpeg and .mov

video files for later replay. Sample videos are available on the referenced

website [60, 61, 70] The takeaways from this stage are:

1. The need for better performance;

2. More than one point of view; and

3. Animation.

Given that at least the last two generations of professional engineers have

successfully used 3D computer graphics to obtain clear comprehensive

representative views of 3D objects, views adequate to replicate and build these

objects in 3-space, it does not take a leap of faith to accept that 3D CAD

visualizations deliver comprehensible depictions of the models they represent.

In the research that has been described here various methods of representation have

been implemented and examined for applicability to the stated goal. An analysis of

the properties of CAD visualization software packages yields certain common

functionality. 3D CAD programs provide multiple 2D points of view of the 3D

object. An effective common format is three 2D projections along the third axis
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Figure 7.2: Spacetrace showing Three Viewports
A) non-relativistic, B) relativistic, and C) god’s-eye views of the same spacetime event.

Accompanying video filename figure-7.2.mov. Video ID: Doppler-07a,Dash-07a.

thus yielding Front, Top, and Side views of the object resulting from projections

along the Z, Y , and X axes, respectively, as in Figure 7.1. A forth viewport often

provides a perspective projection as shown in the referenced figure, an isometric

projection or even an arbitrary 2D cross-section of the 3D model.

7.1.2 Stage Two - nD Lattice

In the second stage both Euclidean and non-Euclidean space was visualized from

multiple viewports. This experiment, described in Section 2.4, introduced the

Aspect concept wherein viewports depicted 3D views of dimensionally reduced

4-space dimensions. Each of the six viewports delivered a 3D view of the 4-space,

but each view delivered a different selection of three of the four possible dimensions

thus reducing the dimensionality of the view. The first three viewports as in

Figure 2.14 followed the CAD convention to display anti-clockwise from the top-left,

the Top, Front, and Side views of the nominal XY Z 3-space, as can be seen,
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respectively, from the labels on the axes. The remaining three viewports depicted

three alternate Aspects, that are the other combinations of three of the four

dimensions. Continuing anti-clockwise those Aspects are TXZ, TY Z, and TXY .

In addition to multiple aspects, interactive performance was introduced. Each of the

six viewports could be rotated, panned and zoomed independently and collectively.

This greatly enhanced the ability of the user to explore this 4-space. Certain other

characteristics of the non-Euclidean nature of the 4-space could be explored such as

those discussed in Section 8 Future Work, which are beyond the scope of this

dissertation.

For example, retarded time effects could be viewed interactively by propagating

wavefront-like perturbations in the 4D lattice over time at a specified rate. That is

to say, an arbitrary inverse distance squared relationship could be assumed between

adjacent lattice cells such that the displacement of one cell affects the displacement

of adjoining cells at a specified rate, similar to the propagation of waves at a finite

rate in a discrete toy spacetime. The history of the source cell for the duration of

the experiment must be saved to be accessible in order to compute the retarded

signal’s contributions to the current spacetime state. The time axis is necessary to

save the 3-space’s history in order to display the 3-space history as if it were a 4D

spacetime. It is assumed that the 4D lattice is in the lab frame and the observer is

at rest, while the source may be in motion with respect to the lab frame. Interesting

non-symmetric radiation effects were discovered as the speed of causal propagation

and the source acceleration were varied in the toy spacetime.

Rendering via projection was not considered due to excessive cell clutter. Trivial

axis intersection views were computed by discarding all 3-space cells not in the

3-space orthogonal to the axis at the axis position defining the particular view.

Interactive arbitrary intersection could be accomplished by resurrecting a

Bresenham Digital Differential Analyzer (DDA) algorithm adapted from a line in
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3D to a hyperplane in 4D, similar to a texture mapping algorithm.

It was learned that removing static cells, or equivalently cells whose delta was below

some minimum value, cleared up the clutter as in figures 2.12 through 2.15. In

addition, color encoding higher order differentials of the cell’s deltas provided even

more useful information as in figures 2.12 and 2.13. This latter technique allowed

for exploration of acceleration and jerk, both useful when examining radiation and

relativistic accelerations.

The takeaways from this stage are:

1. Interactivity is necessary and useful;

2. Multi-viewports with alternate Aspects are necessary and useful;

3. More sophisticated cell-to-cell interactions will require more memory, better

data compression, superior performance, or all three.

7.1.3 Stage Three - Tangible Cross-sections of 4D Models

The third stage was implemented in four steps:

1. Model data structure definition;

2. Convex hull 3D viewer;

3. Extra dimensional Graphics User Interface design;

4. 3D Plucker.

Stage Three, Step One - 4D Model Data Structure

In step one of the third stage models of 4D objects were created by describing their

bounding 3-manifolds in the same way that 3D objects are described by their

bounding 2-manifolds. This implementation allows the bounding 3-manifold of the
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Figure 7.3: Spaceslice - 4D GUI Example

4D model to be described by a parametric function of the four spherical coordinates

α,β,γ, and radius r as shown by the pseudo-code in Figure 6.11. For ease of use in

describing interesting 4D objects, the implementation allows the explicit function six

arguments: the three hyper-spherical angles α, β, γ; and their three associated radii

rα, rβ, and rγ similar to that shown for the three-torus pseudo-code of Figure 6.13

where these latter three radii parameters are labeled radius, depth, and tube.

Stage Three, Step Two - 4D GUI

In step two of the third stage these 4D models, that is four-manifolds with

boundary, were visualized and explored. As in the first two stages, multiple

interactive viewports depicting different Aspects and Points-of-View of the models

of the 4D objects were viewed, explored, and manipulated. A convex hull for each of
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the four Aspects was generated from the projection of the 4D object along one of

the four axes of the 4-space in which the 4D object was embedded: X,Y ,Z, and W .

Each of the resulting 3D objects could then be manipulated in 3-space by a

conventional 3D GUI. In addition, the 4D object could be rotated in 4-space to

provide new Aspects for each of the 3D views, as shown in Figure 7.3. Expected and

unexpected symmetries were thus revealed. But the interiors of these 4D objects

were still mysteries. The ED-GUI is described in Section 5.2.1.

Stage Three, Step Three - 4D Model Convex Hull Shadows

In step three of the third stage a four-dimensional graphics user interface (ED-GUI)

was developed and implemented. The ED-GUI is similar to those of 3D CAD

packages in that it uses the ubiquitous click & drag paradigm both without and

with control keyboard characters to position the Point-of-View and the Slicer Icon,

respectively, in each of the multiple Aspects of the 4D object. Each viewport

provides both a view of the convex hull of one Aspect of the 4D object and a iconic

representation of the 4D position and orientation of the 3-flat that will be used to

intersect the 4D object and define a 3D view of the intersection.

Stage Three, Step Four - Plucking 3D Cross-sections from 4D Models

In step four of the third stage an intersection algorithm has been implemented to

allow the user to explore the “interior” of the 4D object and “pluck” out a 3D

cross-section of same. The position and orientation of the intersecting Euclidean

hyperplane of infinite extent, or 3-flat, is manipulated by the user via the 3-flat icon.

The resulting 3D cross-section is displayed and exported as a 3D object in the form

of a closed compact 2-manifold. The ability to manipulate the cross-section as a 3D

CAD object gives the user the same sense of the object’s tangibility as does a 3D

CAD program with any virtually engineered 3D object since it is now indeed a 3D
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Figure 7.4: Example Multiple Points-of-View and Multiple Aspects for 4D Viewports
This is the convex hull of a 4D torus - a 3-torus

object.

7.2 Viewing 3D Aspects of nD Objects

Multiple Points-of-View of a 3D object, as in a CAD system (Figure 7.1), provide

the CAD operator with a clear perspective of the 3D object under observation. The

conventional rotate, pan, and zoom operations allow the operator to explore unseen

portions of a convex object. Additional tools are available to the CAD operator to

explore hidden areas of concave and hollow objects by operations such as slicing and

transparency.

Multiple views of each of the 4D object’s aspects as shown in Figure 7.4, when

taken together yield a clear perception of the convex hull of the 4D object.

Viewing a 3D object on a 2D computer screen is most effective if the object is

rotating, or even slightly oscillating about an axis, so that the eye can interpret any
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seeming parallax as 3D depth.

7.3 The ED-GUI Makes the Intangible Tangible

As claimed on page 55 in Section 4, converting a 4D object to 3D and enabling

manipulation of the 3D object gives the user a greater sense of the object’s shape.

As described in Section 1.2, a 3D aspect is the dimensional reduction of an nD

object to 3D. As with the view of a 3D object, slight motion conveys more depth

and shape information than a stationary image. Couple the 3D object’s motion to

conventional mouse click & drag so that the user sees the motion as immediate

feedback, and the user has a tangible experience with the 3D object.

In like manner, the click & drag slicer ED-GUI can provide immediate feedback, so

that the user has a tangible experience with the 4D object. The user can pluck a 3D

object out of hyperspace in realtime via click & drag.

It was claimed that 3D slices are representative of the 4d object at the point of

intersection. This is demonstrated in Figure 7.6 where the 4D hypersphere is

intersected by the 3-flat at grid lines corresponding to ∼ ±4.0 on both the X-axis

and Y -axis. The 3D sphere thus plucked from the 4D hypersphere will have a radius

of ∼ 4.0.

Since the 3-sphere is symmetrical about its center with respect to all four

dimensions, the expected radius of the plucked 3D object will be identical to the

radius of the hypersphere minus the minimum distance from the center of the 4D

object to the intersecting 3-flat within a tolerance equivalent to the 3-simplex size.

See Figure 7.5.

A simpler method is to use the ED-GUI to position the intersection so as to produce

an expected value, such as a radius of 4.0 as follows. Note that in Figure 7.6 the

20x20 grid lines on the 3-flat icon are on two-unit centers. Position the 3-flat in the
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R3D

A

Slicer

R2D

3D Sphere 2D Circle

Figure 7.5: Plucking a 1-sphere (2D circle) from a 2-sphere (3D sphere)
A plane intersects a sphere of radius radius3D (R3D) at position A along the Z axis scribing a

circle of radius radius2D (R2D).

upper-right corner viewport so as to intersect the hypersphere’s surface at the X=-4,

X=+4, Y=-4, Y=+4 grid lines as shown. Thus the plucked sphere’s radius will be

∼4.0. This can be verified in the right-hand section of the figure where a third party

PLY 3D viewer displays the minimum and maximum extents of the loaded figure.

The extents, and hence the radius, of the plucked sphere can be confirmed by the

numerical display in the third party PLY viewer in the right panel of Figure 7.6.

7.3.1 Evidence

The 3D slices are representative of the real sub-manifold structure of the 4D models.

The measurements of the 3D object’s size are evidence. The relative sizes can be

measured. The display in Figure 7.6 shows minimum values of (-3.97,-3.942,-4.0)

and maximum values of (+3.97,+3.942,+4.0). The average of these six radii is 3.97.

7.3.2 Proof

It can be shown that the specific slices are representative of the general case.

Consider Figure 7.5 containing a 3D sphere of radius radius3D centered at the
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Figure 7.6: Plucking a 2-sphere (sphere) from a 3-sphere (hypersphere)
A plane intersects a 3-sphere of radius radius4D at position B along the W axis scribing a sphere
of radius radius3D. The radius of the 4D sphere at intersection is selected via the icon to be ∼ 4.0

world-units. The 3D .ply Viewer confirmed a radius of 3.971 world-units.

origin, and an intersecting plane (a 2-flat) constructed parallel to the XY plane,

which encounters the sphere at a position A along the Z axis. The intersection is a

circle of radius radius2D as predicted in equations 7.1 and 7.2.

(radius3D)2 = x2 + y2 + z2 = A2 + (radius2D)2 (7.1)

(radius2D)2 = (radius3D)2 − A2 (7.2)

Extrapolating from 3D to 4D as is our practise, it can be seen in Figure 7.6 which

shows a 4D hypersphere (3-sphere) of radius radius4D centered at the origin, and

being intersected by a hyperplane (a 3-flat) constructed parallel to the XY Z

hyperplane (3-space) at a position B along the W -axis, that the intersection is a

sphere of radius radius3D as predicted by the derivation in equations 7.3 and 7.4.
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(radius4D)2 = x2 + y2 + z2 + w2 = B2 + (radius3D)2 (7.3)

(radius3D)2 = (radius4D)2 −B2 (7.4)

The numerical values in this example are (radius4D)2 = 9.850 world-units and

B2 = 81.18 yielding (radius3D)2 = 14.21, or radius3D = 3.98. This is within 1% of

the measured value shown in Figure 7.6.

7.4 Comparison of Performance Among

Technologies

7.4.1 Frame Rates

The performance of the three technologies can be generalized from their frame rates.

Each of the technologies output an animation as a series of sequential files, one file

for each frame. The frame rate in Table 7.1 was determined from the file system

time stamp on each output frame. All three software packages output at the same

screen resolution. Spacetrace and the Spaceslice used the same input object file to

minimize discrepancies in processing demands. The Spacegrid program does not

process an object, but does process n-space itself. Each of the technologies’

performance curves respond to different classes of input as listed in the column

labeled Critical value in Table 7.1.

Spacetrace’s performance degrades with the size of the image plane.

Spacetrace will require significant optimization to perform interactively. The

Raytracing technology responds well to multiple threads on parallel processors

since each pixel on the screen can be processed independently from all other

pixels. Low resolution 3D raytracing renderers have been optimized to be
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frame rate Displayable Viewports Critical
(fps) dimensions available value

Spacetrace 0.00079 4 3 screen
size

Spacegrid 2-9 4-5 10 cell
count

Spaceslice 3-14 4-5 15 simplex
count

Spaceslice (5D) 0.5 5 15 simplex
count

Table 7.1: Frame Rate for Each Visualization Technology

interactive when ported to high-performance GPU based graphics cards. It is

expected that such a port could provide an interactive capability for

Spacetrace.

Spacegrid’s performance degrades with an increase in the volume of the n-space.

Spacegrid’s performance would improve with an appropriate memory

optimization scheme. But the compression strategy must allow for higher

order differentials in the data display, so a history axis would be necessary.

Merging this technology with Spaceslice would significantly reduce the storage

requirements. For further discussion, see Section 8.2 in Future Work.

Spaceslice provides a range of adequate response times as marked by the shaded

ellipses in the performance curves of figures 7.7 and 7.8. These frame rates

were profiled by the Test-Fixture. Spaceslice performance does degrade with

the number of simplices bounding the mD object. Spaceslice’s performance

could be improved significantly with a parallel thread optimization strategy,

due to the parallel and independent nature of the algorithm. A thread could

be devoted to each simplex, and to each edge within the simplex.

The faster and more responsive the performance, the more tangible is the

experience for the user. [71] As is highlighted by the shaded ellipse in Figure 7.7 and
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Figure 7.7: 3-Sphere complexity vs. log(frames-per-second)
Frame rates determined from internal software profiling.

in Figure 7.8 there is a range of 4D object complexity that provides both adequate

object complexity to view the object’s shape, and adequate response time as

measured by frame-rate to also provide a tangible experience for the user. Note that

the response times meet or exceed those response times specified by the US Military

Standard MIL-STD-1472F in Table XXII for real-time systems as shown in

Figure 7.9.

7.4.2 Dimensional Reduction

Each of the technologies provides dimensional reduction at different levels.

Spacetrace only knows how to render 3D and (3+1)D objects into a 2D frame

buffer. The usual reflection, refraction, and shadow capabilities of raytracers are

available to enhance the depth cues for the user. The other two display packages use

the Aspect paradigm to display a subset of the available dimensionality via

projection or intersection. Hence, there is no theoretical limit to the number of

dimensions that can be displayed given adequate screen real estate and performance
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Figure 7.8: 3-Torus complexity vs. log(frames-per-second)
Frame rates determined from internal software profiling.

to support many 3D viewports.

Viewports
Dimensions

Spacetrace 1 2 3 4
4 4 4 4

Spacegrid 1 2 3 4 5 6 7 8 9
3 3 3 4 4 4 5 5 5

Spaceslice 1 2 3 4 5 6 7 8 9 10 11 12
3 3 3 4 4 4 5 5 5 5 5 5

Table 7.2: Number of Viewports and Dimensions for Each Visualization Technology
Upper row is number of viewports. Lower row is corresponding number of viewable dimensions.

Spacetrace can support an unlimited number of viewports, each of which is a

single point-of-view from an Inertial Reference Frame. Non-relativistic views,

such as a god’s-eye, are also available. But these are all the same Aspect -

that is a 3D view of (3+1)D-spacetime.

Spacegrid supports up to nine Aspects (3D-views) of five dimensions in its current
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MIL-STD-1472F

196

5.14.11  Data and message transmission.  See 5.14.8.13.1 and 5.14.8.13.2.

5.14.11.1  Functional integration.  Data transmission functions shall be integrated with other
information handling functions within a system.  A user should be able to transmit data using the same
computer system and procedures used for general entry, display and other processing of data.

5.14.11.2  Consistent procedures.  Procedures for preparing, sending and receiving data and
messages shall be consistent from one transaction to another, and consistent with procedures for other
information handling tasks.

5.14.11.3  Minimal memory load on users.  The data transmission procedures should minimize
memory load on the users by providing computer aids for automatic insertion of standard information,
such as headers and distribution lists.

5.14.11.4  Interrupt.  Users should be allowed to interrupt message preparation, review, or
disposition and then resume any of those tasks from the point of interruption.

Table XXII.  Maximum Acceptable System Response Times

System Interpretation Response Time Definition Time (Secs)

Key Response

Key Print

Page Turn

Page Scan

XY Entry

Function

Pointing

Sketching

Local Update

Host Update

File Update

Inquiry (Simple)

Inquiry (Complex)

Error Feedback

Key depression until positive response, e.g., "click"

Key depression until appearance of character

End of request until first few lines are visible

End of request until text begins to scroll

From selection of field until visual verification

From selection of command until response

From input of point to display point

From input of point to display of line

Change to image using local data base, e.g., new menu list
from display buffer

Change where data is at host in readily accessible form,
e.g., a scale change of existing image

Image update requires an access to a host file

From command until display of a commonly used message

Response message requires seldom used calculations in
graphic form

From entry of input until error message appears

  0.1

  0.2

  1.0

  0.5

  0.2

  2.0

  0.2

  0.2

  0.5

  2.0

10.0

  2.0

10.0

  2.0

Figure 7.9: Military Standard MIL-STD-1472F Table XXII Response times.

implementation. Additional dimensions could be coded with additional

viewports, given sufficient memory and compute power.

Spaceslice supports up to twelve Aspects (3D-views) of five dimensions. The

current implementation can support up to seven concurrent dimensions.

Additional viewports and Aspects for up to seven dimensions can be added by

updating the viewport display tables used by the Test-Fixture.
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Figure 7.10: Donut Pair - 3D Tori Plucked from a 4D Torus by Intersection with the
3-flat

7.4.3 Tangible Results

A 3D sphere plucked from its embedding 4D sphere as shown in Figure 7.6 or a 3D

tori pair plucked from their embedding 4D torus as shown in Figure 7.10 are

obvious tangible results. Should the user be able to reconstruct these two common

figures from memory, then the research has fulfilled the criteria for Hanson’s

Visualization Principle.[39]

7.5 Slices are Representative

As discussed in sections 7.3 and 7.4.3, tangible results can be seen in Figure 7.6 in

which a sphere was plucked from its embedding in the 3-manifold. The 3rd party

view shows a tangible result. Another example is shown by the pair of tori in

Figure 7.10 which were plucked from their embedding 4D torus in 4-space shown in

Figure 7.11.
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Figure 7.11: 4D Torus - The Source of the Plucked Donut Pair
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Chapter 8

Future Work

Visualizing the morphology of Extra Dimensions can be treated as a field in its own

right, and as such there is a wealth of research that is yet to be performed. Firstly,

consolidation of prior research is essential.

8.1 User Studies

There is an interesting juxtaposition between Hanson’s statement, “We can argue

that some intellect, possibly superhuman, can in fact understand the 4D images we

produce”, and Aguilera’s repetition of Allen’s question about how the effect “..of the

increasing use of videogames ... will change the way people think..”. The readers

may draw their own conclusions. As reminded by Weiskopf, “..it is a grand goal to

find some kind of (formalized) metric to assess the effectiveness..” of visualizations.

It is imperative that Weiskopf’s formalized metric be found so that visual effects

such as transparency, lighting, shadows, perspective, animation, depth-of-field,

focus, fog, blur, red-shift, brightness, subtended-angle, multiple Points-of-View,

ghosting, multiple-aspects, and so forth, can be efficiently applied as engineering

tools to craft an effective visualization of extra dimensions. At that time it may be

possible to answer these questions of Hanson and Allen.
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8.2 Exploring Dynamic Non-Euclidean Space

Figure 8.1: Slice of a 4D Torus in a non-Euclidean 4-space.
Accompanying video filename figure-8.1.mov. Video ID: I36m09s21sa05r51.52t0 ts8o15w KVhoeA

Physics and mathematics are a wealth of dynamic non-Euclidean spaces. Solving

non-linear equations analytically is fraught with challenges whether performed by

hand, by computer, or computer assisted. As described in Section 4.2, a

combination of the Spacegrid and the Spaceslice implementations by the simple

expedient of perturbing the vertices of the Spaceslice model using the Spacegrid ’s

algorithms, either pre- or post- slicing will efficiently address this challenge. In

either case the 3-flat code is still a linear intersection with an approximation of the

warped n-space visualization that can be generated interactively in realtime.

Shown in Figure 8.1 is an example of slicing a three-manifold in non-Euclidean

4-space. Figure 8.2 is the same slice in Euclidean space. It is expected that this

strategy would provide a tangible experience with curved space comparable to the

Spaceslice Euclidean implementation. Figure 8.1 is a proof-of-concept of a
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Figure 8.2: Slice of a 4D Torus in Euclidean 4-space.
Accompanying video filename figure-8.2.mov. Video ID: I36m09s21sa05r51.52t0 ts8o15w KV

non-Euclidean display showing the result of a merger of the Spacegrid and

Spaceslice paradigms. Further work is required to pluck an E3 artifact from a

non-Euclidean 4-space.

8.3 Open Questions

8.3.1 Emergent Surface Normals for Simplices of Arbitrary

Dimension

A mechanism to generate and intersect generic n-simplices for an arbitrary

dimension n would be useful. The intersection mechanism should also provide

emergent surface normals for the simplex sub-manifold without additional

processing.
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8.4 Pedagogical Applications for Extra

Dimensional Visualization

8.4.1 The Ehrenfest Paradox

Consider a traditional merry-go-round rotating at a relativistic velocity.

Paradoxically, the circumference must Lorentz contract in the direction of rotation,

while the radius must stay a constant length. At 0.866 c, for example, the length

contraction is 50%.

A 4D spacetime representation of the “relativistic merry-go-round” may provide

interesting and comprehensive insight into the Ehrenfest paradox.1 The Spaceslice

package has the capability to sweep2 a rotating 2-sphere into 4D spacetime. The

package can also perform a Lorentz transform during the sweep operation. The

resultant 4D object would then lend itself to visualizing the Ehrenfest Paradox of

the relativistic merry-go-round.

8.4.2 (6+1)D Phase-spacetime

In undergraduate physics, phasespace is used to analyze a 3D object’s

equation-of-motion in a 1D world. With the upgrade of Spaceslice into 7D, a 3D

object’s or particle’s phasespace can be analyzed in all six degrees of freedom: the

object’s 3D position and 3D velocity or momentum.

A 7D visualization could be created by a 3D velocity space crossed with a (3+1)D

spacetime to yield a (6+1)D phase-spacetime. Visualizing geodesics may yield

interesting views. (6+1)D phase-spacetime may also provide new insights into the

Ehrenfest Paradox.

1An in depth discussion of the Ehrenfest Paradox is beyond the scope of this work.
2Sweep - A CAD-like operation to extrude an object along an orthogonal axis into a higher

dimension while simultaneously performing affine matrix transformations on the object, usually
from 2D to 3D, but 3D to 4D as used here. May be extended to include Lorentz transforms.
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8.4.3 Lorentz Invariant Hypervoxel Volumes

According to Einstein’s Relativity, a 4D hypervoxel’s hypervolume is invariant. This

could be interactively demonstrated and explored with suitable 4D models.

It would be interesting to observe the dynamic symmetries of perturbed Lorentz

invariant spacetime hypervoxels in the vicinity of high energy densities (mass).

Visualizing the geodesics (around black holes, for example) may yield visually

interesting symmetries of General Relativity.

8.4.4 Inflation and Expansion of the Universe

Figure 8.3: Big Bang, Cosmic Inflation, and the Cosmic Microwave Background
Timeline of the Universe. Credit: NASA/WMAP Science Team

The expansion of the Universe could be interactively visualized and explored with a

(3+1)D spacetime diagram. Exploring the Universe’s shape from the Big Bang,
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through Cosmic Inflation, up to the present era could be quite insightful for a

curious student.
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Chapter 9

Conclusion

The ultimate goal has been to provide the user a tangible and memorable

experience with mathematical models of four dimensional objects such that the user

can see the model from any vantage point.

By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can

be rotated, panned, scrolled, and zoomed until a suitable Aspect is obtained. The

4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice

the model at an arbitrary orientation and position to extract or “pluck” an

embedded 3D slice or “aspect” from the embedding four-space.

This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer

using three multiple POV viewports and optionally exported to a third party CAD

viewer for further manipulation.

Plucking and Manipulating the Aspect provides a tangible experience for the

end-user in the same manner as any 3D Computer Aided Design viewing and

manipulation tool does for the engineer.

In order to achieve this objective, the following steps were taken.

1. Codified 3D to 4D Extrapolation Strategies:

This technique to envision solutions to higher dimensional challenges is

116



necessary for 3D observers. Developing a methodology to extrapolate a

sphere’s bounding triangular mesh to a hyper-sphere’s bounding tetrahedral

mesh is an example of this strategy.

2. Reviewed visualization of non-Euclidean Minkowski spacetime:

Examined the formation of a data structure to support 3D objects extruded

into 4D spacetime in Section 2.3. This identified an algorithm to describe the

hypersurfaces of higher dimensional mathematical models, to reduce these

model’s dimensionality and to visualize the lower dimensional representations

in realtime.

3. Reviewed multiple points-of-view:

Test fixtures were developed to demonstrate that multiple points-of-view are

useful to visualize non-intuitive phenomena such as special relativity, and by

extrapolation, extra dimensions as discussed in Section 7.1.1.

4. Discovered Aspects - multidimensional 3D views of 4-space objects:

The concept of a 3D Aspect of a 4D object was discussed in Section 2.4 as a

4D extrapolation of multiple points-of-view. A test fixture was created to test

and confirm the concept. This new realtime multi-aspect technology was

added to the conceptual Test-Fixture for visualizing and exploring extra

dimensions.

5. Discovered an efficient data structure:

An extension to the spacetime data structure reviewed in Item 2 was added to

the software Test-Fixture to represent objects of extra dimensions. A module

to use this data structure to craft objects of extra dimensions was also added

to the Test-Fixture in Section 6.

6. Developed an Extra Dimensional GUI:
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A GUI was crafted to allow the user to manipulate the orientation and

position of a 4D or 5D object in 4-space or 5-space in realtime. The 3-flat or

4-flat intersection tool (the slicer) can be positioned and oriented via a 3D

gridded icon. The ED-GUI is described in Section 6.

7. Developed the Pluck methodology to extract an embedded 3D object from

4-space:

It was shown that the plucked 3D object was representative of the 3-manifold.

The Test-Fixture was modified to implement a file output function to export

the plucked object in a common 3D file format to a third party CAD viewer as

described in Section 6.

The ultimate goal has been reached, along with a few penultimate en passant

achievements as listed above. A tool has been developed to allow the user to

interactively explore three-manifolds in realtime.
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Appendix A

Matrix Composition

Bars over variables or functions (for example: matrix) indicate that they are

matrices or return matrices, respectively. Mtx7h is a 7D (8x8) homogeneous matrix

of real numbers. It is dimensionally reduced by the display module to the

appropriate 3D (4x4) homogeneous matrix when it is passed to the OpenGL

renderer for each individual viewport. All mouse click & drags are associated with a

specific viewport.

• Mtx7h makeRotate7D( toAxis, fromAxis, radians)

Make a 7D rotation matrix to rotate the (toAxis,fromAxis) plane from axis

fromAxis to axis toAxis by radians radians.

/********************************************/

/* Create a 5D rotation matrix from indices */

/* of the two axes comprising the rotation */

/* plane and the angle (in degrees). */

/* The following example is a rotation of */

/* the XW plane A radians from X into W. */

/* or 1 -> 4 of A degrees */
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/* 0 1 2 3 4 5 6 */

/* 0 1 0 0 0 0 0 0 */

/* 1 0 cA 0 0 -sA 0 0 */

/* 2 0 0 1 0 0 0 0 */

/* 3 0 0 0 1 0 0 0 */

/* 4 0 sA 0 0 cA 0 0 */

/* 5 0 0 0 0 0 1 0 */

/* 6 0 0 0 0 0 0 1 */

/* */

/* Cos[] are on the diagonals */

/* Sin[] are antisymmetric about diagonal */

/********************************************/

• Mtx7h reduce7Dto3D( which3Axes)

Compose a 7D matrix to shift the 3 components specified in which3Axes to

the X,Y,Z components.

// Compose a 7D matrix to capture the 3 Axes specified

// by whichAxes. For example to map (t,Z,X,Y) of a 4D

// homogeneous matrix to (X,Y,Z,0):

// { 0, 0, 0, 0, 0} The coefficients other than

// { 0, 0, 0, 1, 0} X,Y,Z in the target matrix

// { 0, 1, 0, 0, 0} are irrelevant since only the

// { 0, 0, 1, 0, 0} (X,Y,Z) components are used by OpenGL

// { 0, 0, 0, 0, 0} once the matrix is reduced to 3D

• Mtx7 matrixPOVn( iViewport)

Make a matrix for the viewport iViewport from the mouse position using open

keyboard (no control, shift or Alt keys pressed).
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Hl,Vl Horizontal & vertical mouse positions w/ left button

Hm,Vm Horizontal & vertical mouse positions w/ middle button

Vr Vertical mouse position w/ right button

rotate(6 Hl) ∗ rotate(− 6 Vl) ∗ translate(Hm, Vm, Vr) (A.1)

• Mtx7h matrixSlice( iViewport, invertFlag)

Make a matrix for the 3-flat from viewport number iViewport. Use the mouse

position captured when the keyboard SHIFT key was pressed, using the same

mouse symbol convention as in matrixPOV n(), above. The values of h, ĥ, v, v̂

correspond to the indices components of the horizontal matrix and the vertical

matrix, respectively, that will be rotated; and a,b,c correspond to the

components of the homogeneous matrix that will be used for translation. The

values of these indices as specified by iViewport, determine the input

characteristics of the Viewport for which the mouse commands are being

processed.

The 3-flat is rotated by Rot for each viewport, then intersected with the 4D

model. The intersection algorithm is discussed elsewhere.

(h, ĥ, v, v̂, a, b, c) = func(iV iewport) (A.2)

RotiV iewport = rotate(h, ĥ,−6 Hl)∗rotate(v, v̂,−6 Vl)∗translate(a, b, c,−Hm, Vm, Vr)

(A.3)

When invertFlag is set, the de-rotation matrix is built here. The de-rotation

matrix is used to restore the intersecting 3-flat to its nominal Euclidean state.

Consequently the plucked 3D object appears undistorted to the observer in its

Euclidean space.
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deRotiV iewport = translate(Hm,−Vm,−Vr) ∗ rotate( 6 Vl) ∗ rotate(6 Hl) (A.4)

The OpenGL view transform matrix is composed as follows. The 7D matrix is

decomposed into the OpenGL homogeneous 3D matrix format. The V iewport

matrix is a viewport specific constant initialized at startup. The OpenGL view

matrix is composed from the mouse position within the specified viewport.

OpenGL = V iewport ∗ rotate(6 Hl) ∗ rotate(− 6 Vl) ∗ translate(Hm, Vm, Vr) (A.5)

Each viewport is set to display a fixed set of dimensions at startup. A viewport

table (panel[]) contains this information and is referenced by the display driver

when each viewport is displayed.

reduce7DiV iewport = reduce7Dto3D(thisV iewportsAxesiV iewport) (A.6)

In addition to the mouse and keyboard, the orientation of the nD object can be

modified by the control panel. A soccerball rolling ball GUI updates the rotateBall

matrix with its rotation in the specified plane. The control panel table of

axis-to-axis rotation fields also affect the rotate7D via the makeRotate7D() table of

view matrices as shown below.

rotate7D = rotateBall ∗ (

j,k=6∏
j,k=0

(makeRotate7D(j, k, rotateV aluej,k))) ∗ deRot (A.7)
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These latter two viewport specific matrices are used to transform the vertices prior

to being handed off to the OpenGL pipe for rendering.1

vert3 = reduce7DiV iewport ∗ rotate7D ∗ vert7 (A.8)

Each 7D vertex vert7 is rotated and reduced as by Equation A.8 to yield a 3D

vertex vert3, and then passed on to be rendered by the OpenGL pipe, which was

initialized with the OpenGL matrix defined in Equation A.5, above.

1reduce7D is computed just-in-time prior to the drawObject() invocation, so there is no need or
use of a storage array.
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Appendix B

Derivation of Intersection of a Line

with a 3-Flat

4D Hyperplane Equation Detail

V1 V2

V3

V4

Pa

Pb

P

P = Pa  +  u ( Pb–Pa) 

Figure B.1: 4D 3-Plane Equation Derivation
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B.1 3-Flat Intersection with Line in 4-space

Consider a 3-flat defined by the four vertices V1, V2, V3, V4 as depicted in

Figure B.1, to be intersected by the line defined by the two points Pa and Pb. The

intersecting point P on the 3-flat as represented by the shaded plane in Figure B.1,

is found by plugging the coordinates of the vertices and points into the

determinants of Equation B.3 and solving for P in Equation B.2.

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t̂ x̂ ŷ ẑ 1

V t
1 V x

1 V y
1 V z

1 1

V t
2 V x

2 V y
2 V z

2 1

V t
3 V x

3 V y
3 V z

3 1

V t
4 V x

4 V y
4 V z

4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.1)

P = Pa + u(Pb − Pa) (B.2)

Solving yields:

u =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1

V t
1 V t

2 V t
3 V t

4 P t
a

V x
1 V x

2 V x
3 V x

4 P x
a

V y
1 V y

2 V y
3 V y

4 P y
a

V z
1 V z

2 V z
3 V z

4 P z
a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0

V t
1 V t

2 V t
3 V t

4 P t
b − P t

a

V x
1 V x

2 V x
3 V x

4 P x
b − P x

a

V y
1 V y

2 V y
3 V y

4 P y
b − P y

a

V z
1 V z

2 V z
3 V z

4 P z
b − P z

a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.3)
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B.2 4-Flat Intersection with Line in 5-space

Consider a 4-flat defined by the five vertices V1, V2, V3, V4, V5 to be intersected by

the line defined by the two points Pa and Pb. The intersecting point on the 4-flat is

found via the following simultaneous equations in a manner similar to that given in

Section B.1:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t̂ x̂ ŷ ẑ ŵ 1

V t
1 V x

1 V y
1 V z

1 V w
1 1

V t
2 V x

2 V y
2 V z

2 V w
2 1

V t
3 V x

3 V y
3 V z

3 V w
3 1

V t
4 V x

4 V y
4 V z

4 V w
4 1

V t
5 V x

5 V y
5 V z

5 V w
5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.4)

P = Pa + u(Pb − Pa) (B.5)

Solving yields:
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u =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1

V t
1 V t

2 V t
3 V t

4 V t
5 P t

a

V x
1 V x

2 V x
3 V x

4 V x
5 P x

a

V y
1 V y

2 V y
3 V y

4 V y
5 P y

a

V z
1 V z

2 V z
3 V z

4 V z
5 P z

a

V w
1 V w

2 V w
3 V w

4 V w
5 Pw

a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 0

V t
1 V t

2 V t
3 V t

4 V t
5 P t

b − P t
a

V x
1 V x

2 V x
3 V x

4 V x
5 P x

b − P x
a

V y
1 V y

2 V y
3 V y

4 V y
5 P y

b − P y
a

V z
1 V z

2 V z
3 V z

4 V z
5 P x

b − P z
a

V w
1 V w

2 V w
3 V w

4 V w
5 Pw

b − Pw
a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.6)

If one assumes that there is no vertex V5 that is not co-hyper-planar with the 3-flat

then this 4-Flat equation can be simplified to the 3-Flat equation.
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Appendix C

Model Builder Documentation

(mkhyper V7.5)

This section shows the command line usage documentation and sample output for

mkhyper V7.5, and demonstrates the input format expected by the nD viewer.

This module produces the 4-manifold with closed compact 3-manifold boundary.

User can select to output a model of one of the following in 4-space: 2-sphere;

3-sphere; spinning 2-sphere; 3-torus, 4-cube. User controls the radii of the objects

and all three radii of the 3-torii. The models can be output in 4-space or into a 4D

spacetime. The velocity vector of spacetime models can be specified, as well as the

angular velocity vector of spinning models. Models are described by their

boundaries of pure simplicial 2-complexes (triangles) or 3-complexes (tetrahedra),

depending on if a wireframe or shaded visualization is intended, respectively.

The module generates a count of, and then the list of 7D vertices to be used by

model. In this example, a list of triangles is then generated, defined by their five

indices into the vertex table. The first three indices select the triangle’s vertices.

The last index selects an offset vector, while the second to the last index selects a

velocity vector. Note that in this example all triangles share the same offset and
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velocity. The offset is zero, while the velocity is 7.0 along the t axis indicating a

duration of 7.0 units.

Lighting information is also provided for each triangular face or tetrahedral

hyperface.
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==================================================================

==================================================================

mkhyper.exe Command Line Usage

/? - Help (this)

/a <n> - Regular (0); odd (1) or Even (2) object tetra’s

/b <f> - Beta velocity ( fVelocity = dTime * Beta)

/c <n> - Number of cycles in time /t [0]

/d <f> - Angular Delta V

/h <n> - Hue <n>

/i - Use Indexed Vector List [no]

/o <n> - generate object ’n’ [0]

0 - 2-sphere in 3D

1 - 3-torus in 4D v2.0 in 5-space (XYZW) - wire

21 - 3-torus in 4D v2.0 in 5-space (XYZW) - solid

2 - 3-torus in 4D v2.0 in 4-space (TXYZ) - wire

22 - 3-torus in 4D v2.0 in 4-space (TXYZ) - solid

3 - 3-torus in 4D v2.1 in 5-space (XYZW) - wire (Gopi)

23 - 3-torus in 4D v2.1 in 5-space (XYZW) - solid (Gopi)

4 - 3-sphere in 5-space (XYZW)

24 - 3-sphere in 5-space (XYZW)

5 - 3-sphere in 4-space (TXYZ)

6 - 2-torus in 3-space (XYZ)

7 - 3-torus in 4D v1.0 (XYZW)

8 - 3-torus in 4D v1.1 (XYWZ)

9 - 3D Calabi-Yau surfaces

10 - 3-torus in 4D v3.0 ([T]XYZW)
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11 - 3-torus in 5D v1.1 ([T]XYZW)

12 - 3-torus in 5D vx.x ([T]XYZW)

13 - 5D cube v 3.0 in 5-space ([T]XYZW)

14 - 2-sphere in 4D Rotating via 4-space (TXYZ)

/r <f> - Radius scale [5.0]

/ra <f> - Radius A scale [2.0]

/rb <f> - Radius B scale [2.0]

/s <f> - steps per PI in three sphere [7.5]

/t <f> - timeaxis extrusion [1.0]

/v <f> - angular velocity

Y:\4D\mkhyper>debug\mkhyper /o 0 /t 7 /s 9 /r 7 /i > ..\sdf\mkndx_00s9r7t7.sdf

## debug\mkhyper /o 0 /t 7.000000 /r 7.000000 /ra 2.000000 /rb 2.000000 /s 9.000000 /a 0 /w 0.000000 /d 0.000000 /v 0.000000

## 2-sphere in XYZ 3-space

##Allocated 174 Vectors (10K)
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==================================================================

==================================================================

mkhyper.exe File (.SDF) Sample Output:

## debug\mkhyper /o 4 /t 7.000000 /r 7.000000 /ra 2.000000 /rb 2.000000 /s 7.000000 /i

##V1.5#################################

snip

######################################

## 3-sphere in XYZW 4-space

vectors 794

(7.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000)

(0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000)

(0.000000,0.000000,0.000000,0.000000,7.000000,0.000000,0.000000)

(0.000000,0.000000,0.000000,3.037186,6.306782,0.000000,0.000000)

(0.000000,0.571766,1.187284,2.736410,6.306782,0.000000,0.000000)

(0.000000,0.000000,1.317786,2.736410,6.306782,0.000000,0.000000)

snip

(0.000000,-0.000000,0.000000,0.000000,-7.000000,0.000000,0.000000)

###End of Vector Records

## 3-sphere in XYZW 4-space

itriangle 2,3,2,0,1

diffuse [0.5, 0.5, 0.90]

specular [1, 0.9, 0.9]

reflectivity 0.4

Phong_exp 20

itriangle 3,3,2,0,1
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diffuse [0.5, 0.5, 0.90]

specular [1, 0.9, 0.9]

reflectivity 0.4

Phong_exp 20

itriangle 2,4,2,0,1

diffuse [0.5, 0.5, 0.90]

specular [1, 0.9, 0.9]

reflectivity 0.4

Phong_exp 20

==================================================================
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Appendix D

Lattice Viewer Documentation

(Spacegrid V5.72)

This module generates the lattice display of a 4-space and a 5-space as multiple

Aspects in multiple viewports as specified by the /N parameter.

==================================================================

Command line parameters:

3: Use 3DSMax GUI [off]

D: Debug level [0]

G: set Grid limits [-10,10,0.5,40]

I: Input filename [sc_ani.sdf]

L: Label (N/I)

N: Number of dimensions [6]

O: Output filename [V:/ppm/sc_ani]

P: Panel (not image) size [160,160]

R: Rotation (T/Z): 0-Euclidean; 1-Minkowski [1] 2-Theory, 3-Test

S: Swap T & Z axes [1]

T: Time (N/I)
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Figure D.1: Spacegrid V5.72 Control Panel

?: List this menu

Example:

Ray4D /O frame_no /I ../conf/setup.sdf

Note: Last parm processed has precedence

==================================================================
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==================================================================

Spacegrid V5.72 4D: ( 40, 42, 42, 42)

requesting 361.758 MB as 40 blocks of 9.044MB

Using a Grid of -10.000000, 10.000000, 0.500000, 40.000000

Usage:

Available one character keyboard commands from view window:

q - S: Quit

A - D: toggle Axes display [ON]

C - M: Move BH to Center

D - S: toggle color Debug

M - P: toggle Mark high values w/ circle

R - D: Reset to nominal position

S - S: Enable Statistics output [off]

a - D: toggle showing Acceleration [off]

b - M: Toggle open Boundary [on]

c - D: Track BH (N/I)

d - D: toggle Delta [off]

e - D: toggle x 100 Exaggeration [off]

f - S: File this sequence [off]

g - D: toggle Grid display [on]

h - M: toggle black Hole [on]

i - D: Exponential (w/Log) [off]

j - D: toggle Jerk (3rd order) [off]

k - S: Enable status display [off]

l - D: toggle Lorentz Transform mode [off]

m - S: toggle Miscellaneous flag [accel]
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n - M: toggle Circle Oscillation [off]

o - M: toggle Oscillator [off]

P - S: toggle debug Print

p - S: toggle debug Pause

q - S: Quit

r - M: toggle Relativistic mode[off]

s - D: toggle Stochastic mode [off]

t - D: Increment thru XYZ,TXY, TYZ, TXZ

u - M: Use alternative mod [off]

v - M: toggle Velocity mode [off]

w - P: toggle draw static grid marks

x - D: toggle show 4 Volume on W axis

z - M: Zero model lattice[off]

0 - Select all panels[0]

1..6 - Select panel number [0]

? - This menu list

Left Mouse - Rotate

Mid Mouse - Pan & Scroll

Right Mouse - Zoom

CTRL/Left - Rotate T/Z

State: /R Minkowski(1)

==================================================================
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Appendix E

Model Viewer Documentation

(SpaceWalk V7.50)

This module imports the output of the mkhyper module and displays the 4D and

5D convex hulls as multiple Aspects in multiple viewports as specified by the /N

parameter.

SpaceWalk7D V7.5 Command Line Usage:

==================================================================

SpaceWalk7D V7.50

For commandline invocation usage, enter:

debug\SpaceWalk7D /?

For interactive character command usage, enter:

?

Command line parameters:

3: Use 3DSMax GUI [off]

A: Automated animation mode file name [none]

B: Animation filename beginning number [0]

D: Debug level [0x0000]
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0x2000 - Print FlatC_WikiM Vectors

0x4000 - Print Sliced Poly Vectors

0x8000 - Print Dets, Inv’s & Xpose Matrices

F: Toggle Special (Fn) key ’n’ [none]

G: set Grid limits (-1.00 1.00 0.25 10.00)

I: Input filename (../sdf/sc_ani.sdf)

L: Label (N/I)

M: 5D size [1.0]

N: Dim/Display Number (1-6) [6]

2 (1); 3: (2x2)3D; 4: (2x3)4D; 5: (2x3)5D; 6: (3x3)5D;

7: (3x3)4D; 8: (3x4)5D; 9: (2x5)5D; 10: [3x3)5D; 11: [3x4)4D

12: [3x5)5D; 13: [3x3)4D;

O: Output filename (../ppm/Space5D/sw7.50_)

P: Set image Size via Panel size (wd,ht) [240,240]

R: Rotation (T/Z): 0-Euclidean; 1-Minkowski [1] 2-Theory, 3-Test

T: Transparency [1.0]

Y: Yank in & execute animation script file (../sdf/sc_ani.scp)

?: List this menu with defaults

Example:

SpaceWalk7D /O frame_no /I ../conf/setup.sdf

Note: Last parm processed has precedence

==================================================================
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Figure E.1: SpaceWalk V7.50 Control Panel

==================================================================

SpaceWalk7D V7.5 Console output:

Spacegrid V7.50 4D: ( 10, 12, 12, 12)

requesting 2.109 MB as 10 blocks of 0.211MB

Using a Grid of -1.000000, 1.000000, 0.250000, 10.000000

. Total cameras available: 1., camera mask 00000000

/L ’’ TS: ’(null)’

Build GLUT display. Register callbacks. Windows for 6D. Register display callback.

SpaceWalk7D V7.50
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Figure E.2: SpaceWalk V7.50 Matrix Debug Window

For commandline invocation usage, enter:

debug\SpaceWalk7D /?

For interactive character command usage, enter:

?

Timing: Init: elapsed 1 seconds [00:00:01]

Timing: Copy: [00:00:00] elapsed seconds 0.000 ms 0/0

Timing: Draw: [00:00:00] elapsed seconds 0.000 ms 40/0

Timing: Run : [00:00:07] elapsed seconds (7)

==================================================================

141



==================================================================

SpaceWalk7D V7.5 Interactive Keyboard Commands:

Usage:

Available one character keyboard commands from view window:

q - S: Quit

A - D: toggle Axes display [ON]

C - M: Move BH to Center

D - S: Input Debug Hex Value

0x2000 - Print FlatC_WikiM Vectors

0x4000 - Print Sliced Poly Vectors

0x8000 - Print Dets, Inv’s & Xpose Matrices

E - M: increment Einstein spacetime [0]

H - D: show HyperSlice matrix window

I - D: Invert (derotate) sliced view via rotate7D [on]

L - D: toggle lighting mode [ON]

M - P: toggle Mark high values w/ circle

N - D: toggle clipNdx vs copyNdx slicing [clip]

P - D: draw polygons, not lines [false]

R - D: Reset to nominal position

S - M: Slice w/ 3-brane [off]

T - D: Slice T (not W) axis [ off]

W - D: Slice W (not T) axis [on]

Y - D: Reset hyperSlice to nominal state

a - D: toggle showing Acceleration [off]

b - M: Toggle open Boundary [on]

c - D: Track BH (N/I)
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d - D: toggle Delta [off]

e - D: toggle x 100 Exaggeration [off]

f - S: File this sequence [off]

g - D: toggle Grid display [on]

h - M: toggle black Hole [on]

i - D: Exponential (w/Log) [off]

j - D: toggle Jerk (3rd order) [off]

k - S: Enable status display [on]

l - D: toggle Lorentz Transform mode [off]

m - S: toggle Miscellaneous flag [accel]

n - M: toggle Circle Oscillation [off]

o - M: toggle Oscillator [off]

p - S: toggle debug Pause

q - S: Quit

r - M: toggle Relativistic mode[off]

s - D: toggle Stochastic mode [off]

t - D: Increment thru XYZ,TXY, TYZ, TXZ

u - M: Use alternative mod [off]

v - M: toggle Velocity mode [off]

w - P: toggle draw static grid marks

x - D: label vertices [off]

y - D: Toggle scripting state [/Y set]

z - M: Zero model lattice[off]

0 - Select all panels[0]

1..9 - Select panel number [0]

? - This menu list
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Left Mouse - Rotate

Mid Mouse - Pan & Scroll

Right Mouse - Zoom

CTRL/Left - 3-brane Rotate (X,Y)

CTRL/Right - 3-brane Zoom ( Y)

F1 - Inc Show Slicer [off,on,3D]

F2 - Test for XSCT_ALL

F3 - Show clipNdx

F4 - Original 3D object: 0-Show!3D!F3,2-Hide,3-Hide 4 slice,4-Show ALL [0]

F5 - Show TFace/Slice/F05_2/F05_3

F6 - 1: Blend 2: Persp 3: Blend & Persp 4: 3D [0]

F7 - Use Mathworld/Wiki Slicer Algorithm [MW]

F8 - Test smooth shade

F9 - Select one of 6 slice matrices [0]

F10 - Test Determinant

F11 - Label More Vertices [off]

F12 - Walk Scene

==================================================================
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Appendix F

Contents of Accompanying CD

These are the video files associated with the figures in the PhD Dissertation by Don
V Black, entitled: ”Computational Techniques to Enable Visualizing Shapes of
Objects of Extra Spatial Dimensions”.
The figures in the dissertation are frames from these associated videos. The videos
were generated by converting from .ppm format images to Apple QuickTime format
.mov videos by the Linux FFmpeg video converter (ffmpeg) program executed
under the Ubuntu 8.10 Linux distribution.
The sequences of .ppm frames were created programmatically as described in the
dissertation. This accompanying CD was generated via the MicroSoft XP-Pro 64 bit
operating system updated to SP-3 on an off-the-shelf DVD burner. The Nero Home
Essentials retail CD-ROM software ”burned” the files to the CD-ROM.

CD-ROM Contents:

Figure Filename Video ID Information
========= ============================================================================
figure-2.9.mov PHD teaser-AA.mov
figure-6.2.mov PHD-62 TorusI 06m04s33r664t0 hTorus twist-S Z2.mov
figure-6.3.mov PHD-63 TorusI 06m04s9r673t0 hTorus twist Z2.mov
figure-6.8.mov PHD 3-sphereW hSphereI 04s11r633t0 hSph02-633 sliceW.mov
figure-6.9.mov PHD 3-torusW hTorusI 36m05s13r521t0 hTor05I cutWXYZr521p.mov
figure-6.10.mov PHD-5D-LA hSphere7 24sa090702r9t-7 V7.7 hSphereI CutWXYZr9.65p n12-edit.mov
figure-7.2.mov PHD Dash-07a.mov
figure-8.1.mov PHD-Warp-V84d-LA2-g100 I36m09s21sa05r51.52t0 ts8o15w KVhoeA.mov
figure-8.2.mov PHD-Warp-V84d-LA2-Control I36m09s21sa05r51.52t0 ts8o15w KV.mov
README.txt This CD-ROM documentation.

CD-ROM Contents Copyright 2010
All Rights Reserved
Don V. Black, II
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Glossary

k-Flat A k-dimensional (kD) Euclidean hyperplane

of infinite extent in n-space, where k ≤ n., 6

m-Cell An m-dimensional cell that is a subset of a

space whose interior is homeomorphic to an

open m-ball in Rm [72]., 69

m-Cube A cube of dimension m in n-space where m ≤

n. A 3-cube is a common 3D cube, while a 2-

cube is a square, and a 4-cube is a tesseract.,

6

m-Manifold A topological or mathematical space of m di-

mensions that is locally Euclidean. An m-

space with each point’s neighborhood home-

omorphic to Em., 5

m-Simplex A convex hull of (m+1) independent points

in an n-dimensional (nD) Euclidean space En

(where n ≥ m). A triangle is a two-simplex,

while a tetrahedron is a three-simplex. A sim-

plex need not be regular., 68
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m-Sphere A connected compact closed smooth m-

manifold in n-space, where n > m. A 2-

sphere is the common hollow sphere in 3D

which can be defined as the locus of the

points x2 + y2 + z2 = radius2.

A 3-sphere is a closed compact 3-manifold

in 4D which is the locus of the points

w2 + x2 + y2 + z2 = radius2. An m-sphere

is thus the locus of
∑i=m

i=0 x2
i = radius2., 6

mD Object As used in this dissertation will refer to

a closed m-manifold with boundary, whose

boundary is a compact closed (m-1)-manifold

or hyperobject approximated by a pure sim-

plicial (m-1)-complex., 60

nD n-dimensional., 6

(3+1)D 4D Minkowski spacetime of three spatial di-

mensions and one temporal dimension., 5

(4+1)D 5D Minkowski spacetime of four spatial di-

mensions and one temporal dimension., 5

2D two-dimensional., 6

3D three-dimensional., 6
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3D Slice A three-dimensional (3D) sub-space or 3-space

generated by the intersection of a 3-flat with

an n-space or m-manifold in n-space. Usually,

n ≥ m ≥ 3. When the intersected 4D object,

or 3-manifold, is a pure simplicial 3-complex,

the resulting 3D Slice is a 3D object defined by

its bounding pure simplicial 2-complex com-

monly known as a bounding triangular mesh.,

6

4D Object As used in his dissertation will refer to a closed

four-manifold with boundary, whose boundary

is a compact closed three-manifold approxi-

mated by a pure simplicial three-complex., 62

5D Object As used in this dissertation will refer to a

closed five-manifold with boundary, whose

boundary is a compact closed four-manifold

approximated by a pure simplicial four-

complex., 62

Aspect Refers to a dimensionally reduced view of an

nD object or n-space, usually displayed in 3D.,

6

Co-dimension The complementary dimensionality: the codi-

mension of an m-manifold in n-space is an

(n−m)-manifold., 6
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Extrusion A Computer Aided Design (CAD) construc-

tion operation that converts an n dimensional

object into an n + 1 dimensional object. The

vertices, edges, and faces of the object are all

extruded into the next higher dimension along

the extrusion vector and then connected by

edges, planes and prisms, respectively., 20

Flat spacetime Uncurved or ’flat’ n-space - objects obey New-

ton’s Laws, and a geodesic (straight line) is

straight., 18

Hierarchy Problem The force of gravity is on the order of 10−43

times weaker than the force of electromag-

netism. Physicists consider this large differ-

ence to be anomalous., 4

Hyperobject An m-manifold in n-space open or closed, with

or without boundary, where m ≤ n., 6

Large eXtra Dimensions At the time of this writing ’large’ means larger

than the planck length - perhaps on the order

of a millimeter., 4
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Lightcone The lightcone is a right circular 4D hyper-

cone whose symmetric axis is collinear with

the time axis. It is swept out of 4-space along

the time axis by the expanding 3D spherical

light wave front., 21

LXD See Large eXtra Dimensions., 4

Pluck The intersection of a k-flat with an m-

manifold in n-space to extract a k-manifold

object, where codim(k) + codim(m) =

codim(k∩m) = (n−k)+(n−m) = (n−(k∩m))

for k ≤ m ≤ n. For example, (4-space - 3-

flat) + (4-space - 3-manifold) = 2-manifold.

The 3-flat slicer in 4-space should extract a

2-manifold from a 3-manifold embedded in

the 4-space. If the original 3-manifold is a

closed compact tetrahedral mesh bounding a

4D model, the plucked 2-manifold can be ex-

ported as the conventional triangular mesh

boundary of a 3D object., 6

Pure simplicial m-complex A set of aligned non-intersecting simplices in

n-space where m ≤ n, formed by joining con-

tiguous (m-1)-simplices at their shared (m-2)-

faces into a closed compact connected (m-1)-

surface without boundary., 6
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Pure simplicial complex A generic pure simplicial m-complex where m

has not been specified., 6

Relativistic velocity Used to describe the relative speeds between

two reference frames of 0.866c or greater. The

adjective relativistic also describes an object

that is moving with a relativistic velocity with

respect to the camera frame in which the ob-

server is at rest., 21

Temporal homogeneity Implies the object’s visible elements do not

change during the viewing period. Object

shape, color, size, attitude, as well as veloc-

ity, are constant., 18

Tessellation An the operation whereby a hyperplane (a

prism for example) is tiled with a pattern (a

tetrahedron for example) in such a way as

to leave no region uncovered. The covering

hyper-tiles (tetrahedra) need be neither regu-

lar nor congruent., 7

Transversal Intersection Two regular surfaces S1 and S2 intersect

transversally if whenever p ∈ S1 ∩ S2 then

Tp(S1) 6= Tp(S2),[73] where Tp(S) is the tan-

gent of S at p, 77

UED See Universal Extra Dimensions., 4
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Universal Extra Dimensions Can be of infinite extent and non-linear - e.g.

hyperbolic or exponential., 4

152



Bibliography

[1] Don V. Black. Visualization of classical and relativistic spacetime geometery.
Masters thesis, University of California at Irvine, 2005.

[2] Don V. Black, M. Gopi, Frank Wessel, Renato Pajarola, and Falko Kuester.
Visualizing flat spacetime: Viewing optical versus special relativistic effects.
American Journal of Physics, 75(6):540–545, 2007.

[3] Michio Kaku. Hyperspace: A Scientific Odyssey Through Parallel Universes,
Time Warps, and the 10th Dimension. Anchor, 1995.

[4] Euclid of Alexandria. The Elements. Theon of Alexandria, Hellenistic
Alexandria, Greece, circa 300BC.

[5] Arthur Cayley. The collected mathematical papers of Arthur Cayley
[microform], chapter Chapters in the Analytic Geometry of (n) Dimensions.
University Press, Cambridge [Eng.], 1843.

[6] Hermann Grassmann. Extension Theory. American Mathematical Society,
1844.

[7] Bernhard Riemann. On the hypotheses which lie at the bases of geometry.
Nature, 8:14–17; 36–37, 1873.

[8] H. Minkowski, H.A. Lorentz, A. Einstein, and H. Weyl. The Principle of
Relativity, chapter V: H. Minkowski. Space and Time. Cologne, 1908. Dover
Publications, 1908.

[9] Albert Einstein. Relativity, The Special and General Theory, chapter Section
26, The Space-Time Continuum of the Spectral Theory of Relativity
Considered as a Euclidean Continuum. Random House, Inc., New York, 1916,
1916.

[10] TH Kaluza. On the unity problem in physics (1921). In Thomas Appelquist,
editor, Modern Kaluza-Klein Theories. Addison-Wesley Publishing Company,
1921.

[11] Oskar Klein. Quantum theory and five dimensional theory of relativity (1926).
In Thomas Appelquist, editor, Modern Kaluza-Klein Theories.
Addison-Wesley Publishing Company, 1926.

153



[12] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali. The hierarchy problem and
new dimensions at a millimeter. Phys. Lett. B, 429:263, 1998.

[13] L. Randall and R. Sundrum. A large mass hierarchy from a small extra
dimension. Phys. Rev. Lett., 83:3370, October 1999.

[14] Alexandru Scorpan. The Wild World of 4-Manifolds. American Mathematical
Society, Providence, Rhode Island), Year = 2005,.

[15] Greg Ferrar. Hypercuber applet.
http://www.flowerfire.com/ferrar/java/hypercuber/HyperCuber.html, 1995.

[16] Don V Black. Modification in greg ferrar’s hypercuber 4d viewer.
http://hyperdimensia.com/viewer4d.html, 2001.

[17] James Terrell. Invisibility of the lorentz contraction. Physical Review,
116(4):1041–1045, November 1959.

[18] Roger Penrose. The apparent shape of a relativistically moving sphere. In
Proceedings of the Cambridge Philosophical Society, volume 55, pages 137–139,
1959.

[19] Olaf Roemer. A demonstration concerning the speed of light. Philosophical
Transactions, XII(136):893–894, June 1677.

[20] Andrew S. Glassner. An introduction to ray tracing. Academic Press Limited,
San Diego, CA, 1989.

[21] Andrew Howard. Relativistic ray-tracing: simulating the visual appearance of
rapidly moving objects. Technical Report 95/21, The University of
Melbourne, July 1995.

[22] D. Kirk and J. Arvo. The ray tracing kernel. In M. Gigante, editor,
Proceedings of Ausgraph 1988, pages 75–82, ACM, Melbourne, Australia.

[23] P-K Hsiung, R.H. Thibadeau, C.B. Cox, R.H.P. Dunn, M. Wu, and P.A.
Olbrich. Wide-band relativistic doppler effect visualization. Proceedings of the
First IEEE Conference on Visualization, 1990, pages 83–92, October 1990.

[24] D. Weiskopf, U. Kraus, and H. Ruder. Searchlight and doppler effects in the
visualization of special relativity: A corrected derivation of the transformation
of radiance. ACM Transactions of Graphics, 18(3):278–292, July 1999.

[25] Kip S. Thorne Charles W. Misner and John Archibald Wheeler. Gravitation.
W. H. Freeman and Company, New York, 1973.

[26] A. Michael Noll. A computer technique for displaying n-dimensional
hyperobjects. Communication ACM, 10(8):469–473, 1963.

154



[27] A. Michael Noll. Computer-generated three-dimensional movies. Computers &
Automation, 14(11):20–23, Nov 1965.

[28] Thomas Banchoff and Charles Strauss. Computer animation and the
geometry of surfaces in 3- and 4-space. In Proceedings of the 1978
International Congress of Mathematicians, 1978.

[29] Don V Black. Realtime 4d hypercube viewing software. CALCOMP, Inc.
Prisma Demo Utility, Sep 1985.

[30] Carl Machover and John Dill. ”new products”. IEEE Computer Graphics and
Applications, 7(9):72–76, Sept 1987.

[31] C. M. Beshers and S. K. Feiner. Real-time 4d animation on a 3d graphics
workstation. In Proceedings on Graphics interface ’88, pages 1–7, Toronto,
Ont., Canada, Canada, 1988. Canadian Information Processing Society.

[32] S. K. Feiner and Clifford Beshers. Worlds within worlds: metaphors for
exploring n-dimensional virtual worlds. In UIST ’90: Proceedings of the 3rd
annual ACM SIGGRAPH symposium on User interface software and
technology, pages 76–83, New York, NY, USA, 1990. ACM.

[33] David Banks. Interactive manipulation and display of surfaces in four
dimensions. In SI3D ’92: Proceedings of the 1992 symposium on Interactive
3D graphics, pages 197–207, New York, NY, USA, 1992. ACM.

[34] A. Chu, Chi-Wing Fu, A. Hanson, and Pheng-Ann Heng. Gl4d: A gpu-based
architecture for interactive 4d visualization. Visualization and Computer
Graphics, IEEE Transactions on, 15(6):1587–1594, Nov.-Dec. 2009.

[35] Richard Feynman, Robert B. Leighton, and Matthew Sands. The Feynman
Lectures on Physics, Volume I. Addison-Wesley, 1963.

[36] Richard Feynman, Robert B. Leighton, and Matthew Sands. The Feynman
Lectures on Physics, Volume II. Addison-Wesley, 1963.

[37] Richard Feynman, Robert B. Leighton, and Matthew Sands. The Feynman
Lectures on Physics, Volume III. Addison-Wesley, 1963.

[38] David C. Banks. Illumination in diverse codimensions. In SIGGRAPH ’94:
Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, pages 327–334, New York, NY, USA, 1994. ACM.

[39] A. J. Hanson and P. A. Heng. Visualizing the fourth dimension using
geometry and light. In Proceedings of Visualization 1991, pages 321–328.
IEEE Computer Society Press, 1991.

[40] A. J. Hanson and P. A. Heng. Illuminating the fourth dimension. Computer
Graphics and Applications, 12(4):54–62, July 1992.

155



[41] A. J. Hanson and R. A. Cross. Interactive visualization methods for four
dimensions. In In Proceedings of Visualization 1993, pages 196–203. IEEE
Computer Society Press, 1993.

[42] Andrew J. Hanson, Konstantine I. Ishkov, and Jeff H. Ma. Meshview:
Visualizing the fourth dimension. Technical report, Computer Science
Department, Indiana University, 1999.
http://www.cs.indiana.edu/ hanson/papers/meshview.pdf.

[43] Brian Lonsway. The mistaken dimensionality of cad. Journal of Architectural
Education, 56:23–25, 2002.

[44] Andrew J. Hanson and Hui Zhang 0006. Multimodal exploration of the fourth
dimension. In IEEE Visualization, page 34, 2005.

[45] Pak Chung Wong and R. Daniel Bergeron. 30 years of multidimensional
multivariate visualization. In Scientific Visualization, Overviews,
Methodologies, and Techniques, pages 3–33, Washington, DC, USA, 1997.
IEEE Computer Society.

[46] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures.
SIGGRAPH Comput. Graph., 23(3):271–280, 1989.

[47] A. J. Hanson, Tamara Munzer, and George Francis. Interactive methods for
visualizable geometry. IEEE Computer, 27(7):73–83, July 1994.

[48] Andrew J. Hanson, Tamara Munzner, and George Francis. Interactive
methods for visualizable geometry. Computer, 27(7):73–83, 1994.

[49] A. J. Hanson. Geometry for n-dimensional graphics, chapter In Paul
Heckbert, editor,Graphics Gems IV, pages 149–170. Academic
Press,Cambridge, MA, 1994.

[50] Michael D’Zmura, Philippe Colantoni, and Gregory Seyranian. Virtual
environments with four or more spatial dimensions. Presence: Teleoper.
Virtual Environ., 9(6):616–631, 2000.

[51] M. McGuigan, G. J. Smith, and S. Ohta. Visualization of four-dimensional
quantum chromodynamic data. In In Proceedings S. Klasky and S. Thorpe
(Eds.), Visualization Development Environments 2000,Princeton, NJ, pages
159–164, 2000.

[52] Stanimire Tomov and Michael McGuigan. Interactive visualization of higher
dimensional data in a multiview environment. CoRR, cs.GR/0405048, 2004.

[53] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3d occlusion
management techniques. Virtual Reality Conference, VR’07, IEEE, 0:51–58,
march 2007.

156



[54] Julieta C. Aguilera and Mark U. SubbaRao. Voluble: a space-time diagram of
the solar system. volume 6804(1), page 68040A. SPIE, 2008.

[55] Gary Allen (Ed). Human Spatial Memory: Remembering Where. Lawrence
Erlbaum. Associates, Mahwah, New Jersey, 2004.

[56] Daniel Asimov. The grand tour: a tool for viewing multidimensional data.
SIAM J. Sci. Stat. Comput., 6(1):128–143, 1985.

[57] J. Wegman and Jeffrey L. Solka. On some mathematics for visualizing high
dimensional data, 2002.

[58] Almir Olivette Artero and Maria Cristina Ferreira de Oliveira. Viz3d:
Effective exploratory visualization of large multidimensional data sets. In
SIBGRAPI ’04: Proceedings of the Computer Graphics and Image Processing,
XVII Brazilian Symposium, pages 340–347, Washington, DC, USA, 2004.
IEEE Computer Society.

[59] Fred P. Brooks Jr. The computer scientist as toolsmith ii. volume 39, pages
61–68, New York, NY, USA, March 1996. ACM.

[60] Don V. Black. Sliced 4d three-sphere - original video.
http://www.hypervisualization.com/videos/uci/Figure-4.mov, 2009.

[61] Don V. Black. Sliced 4d three-torus - original video.
http://www.hypervisualization.com/videos/uci/Figure-5.mov, 2009.

[62] Andrew J. Hanson, Chi wing Fu, and Eric A. Wernert. Very large scale
visualization methods for astrophysical data. In Data Visualization 2000,
pages 115–124. Springer Verlag, 2000.

[63] Marc Borchers, Martin Falk, Oliver Fechtig, Regine Frank, Frank Grave,
Andreas King, Ute Kraus, Thomas Muller, Hans-Peter Nollert, Isabel
Rica Mendez, Hanns Ruder, Tobias Schafhitzel, Sonja Schar, Corvin Zahn,
and Michael Zatloukal. Explanatory and illustrative visualization of special
and general relativity. IEEE Transactions on Visualization and Computer
Graphics, 12(4):522–534, 2006. Member-Weiskopf, Daniel and Member-Ertl,
Thomas.

[64] USA Department of Defense. MIL-STD-1472F, Human Engineering, volume
MIL-STD-1472F. 1999.

[65] Michael D’Zmura. Navigation in 4-d virtual environments. Spring, 2005, 2005.

[66] John Renze, Todd Rowland, and Eric W. Weisstein. ”compact manifold.”.
2010.

[67] Maurice G. Kendall. A Course in the Geometry of n Dimensions. Charles
Griffins & Company Ltd, London, England, 1961.

157



[68] M A Armstrong. Basic Topology. Springer Science+Business Media, 1983.

[69] Victor Guillemain and Alan Pollack. Differential Topology, page 30.
Princeton-Hall, Inc, Englewood Cliffs, New Jersey, 1974.

[70] Don V. Black. Videos referenced in ”phd dissertation ...”.
http://www.HyperVisualization.com/videos/uci, 2009.

[71] C. Marlin Brown. Human-computer interface design guidelines. Intellect
Books, Exeter, UK, UK, 1999.

[72] Michael P. Hitchman. Geometry with an Introduction to Cosmic Topology.
Jones and Bartlett Publishers (Sudbury, Mass), 2008.

[73] Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, 1976.

[74] Edwin A. Abbot. Flatland, A romance of many dimensions. Public Domain,
1884.
http://www.GravityWaves.com/reprints/4D Phil/Flatland/Flatland.html.

[75] Arthur Cayley. The collected mathematical papers of Arthur Cayley
[microform]. University Press, Cambridge [Eng.], 1889.

[76] Charles Hinton. The Fourth Dimension [Frontispieces]. London and New
York, 1904.

[77] T. Kaluza. On the unity problem of physics. Physik.-Mathema Klasse, pages
966–972, 1921.

[78] Max Born. Einstein’s Theory of Relativity. Dover Publications, 1962, 1924.
Chapter VI, Section 4.

[79] A. R. Forsyth. Geometry of Four Dimensions. Cambridge U. Press, 1934,
London, England, 1934.

[80] Marsden Morse. The Calculus of Variations in the Large. American
Mathematical Society, London, England, 1934.

[81] Sir Arthur Eddington. The Philosophy of Physical Science. 1939.

[82] Hassler Whitney. The singularities of a smooth n-manifold in (2n- i)-space.
Ann. of Math., 45, 1944.

[83] E.A. Abbott. Flatland. Dover Publications, Inc., 1952.

[84] S. Hilbert, D.and Cohn-Vossen. Geometry and the Imagination. Chelsea, New
York, 1952.

[85] J. Semple and G. Kneebone. Algebraic Projective Geometry. Clarendon Press,
Oxford, 1952.

158



[86] D.M.Y. Sommerville.

[87] John A. Wheeler. Logic, Methodology and Philosophy of Science, chapter
Curved Empty Space-Time as the Building Material of the Physical World:
An Assessment. Stanford University Press, 1962.

[88] J. Levine. Imbedding and immersion of real projective spaces. Proc. Amer.
Math. Sot., 14, 1963.

[89] John Milnor. Morse Theory. Princeton University Press, 1963.

[90] A. Cobham. The intrinsic computational difficulty of functions.

[91] J. Hartmanus and R. E. Stearns. On the computational complexity of
algorithms. In Transactions of the American Mathematical Society, volume
117, pages 285–306, May 1965.

[92] Barrett O’Neil. Elementary Differential Geometry. Academic Press, New
York, 1966.

[93] A. Michael Noll. A computer technique for displaying n-dimensional
hyperobjects. Commun. ACM, 10(8):469–473, 1967.

[94] Andrew J. Hanson. Dual n-point functions in pgl(n-2,c)-invariant formalism.
Phys. Rev., D5:1948–1956, 1972.

[95] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity. John Wiley & Sons, New York, 1973.

[96] M. Henon. A two dimensional mapping with a strange attractor. Comm. in
Mathematical Physics, 50(1):69–77, 1976.

[97] Peter Tanner Kenneth Evans and Marceli Wein. Tablet-based valuators that
provide one, two, or three degrees of freedom. In SIGGRAPH ’8I Proc, pages
91–97. SIGGRAPH, 1980.

[98] Greg Abram Henry Fuchs and Eric Grant. Near real-time shaded display of
rigid objects. In SIGGRAPH ’83 Proc, pages 65–69. SIGGRAPH, 1980.

[99] Turner Whitted. I. Lane, Loren Carpenter and Jim Blinn. Scan line methods
for displaying parametrically defined surfaces. Communications of the ACM,
23(1):23–34, Jan 1980.

[100] Michael Potmesil and Indranil Chakravarty. Synthetic image generation with
a lens and aperture camera model. ACM Transactions on Graphics, Apr 1982.

[101] Dino Schweitzer and Elizabeth Cobb. Scanline rendering of parametric
surfaces. In SIGGRAPH ’82 Proc, pages 265–271. SIGGRAPH, 1982.

159



[102] William Armstrong and Robert Burton. Perception cues for n dimensions.
Computer Graphics World, pages l1–28, May 1985.

[103] T. F. Banchoff. Visualizing two-dimensional phenomena in fourdimensional
space: A computer graphics approach. In E. Wegman and D. Priest, editors,
Statistical Image Processing and Computer Graphics, pages 187–202, New
York, 1985. Marcel Dekker, Inc.

[104] Eric Bier. Skitters and jacks: Interactive 3d positioning tools, 1985.

[105] Thomas Banchoff Htiseyin Kocak, Frederic Bisshopp and David Laidlaw.
Topology and mechanics with computer graphics: Linear hamiltonian systems
in four dimensions. Advances in Applied Mathematics, 7:282–308, 1985.

[106] Gregory Nielson and Dan Olsen. Direct manipulation techniques for 3d
objects using 2d locator devices, 1985.

[107] K. Shoemake. Animating rotation with quaternion curves. In Computer
Graphics, volume 19, pages 245–254. Proc. Siggraph, ACM Press, 1985.

[108] Jeffrey R. Weeks. The shape of space : how to visualize surfaces and
three-dimensional manifolds. M. Dekker, New York:, 1985.

[109] R. P. Burton S. A. Carey and D. M. Campbell. Shades of a higher dimension.
Computer Graphics World, pages 93–94, Oct 1987.

[110] G. K. Francis. A Topological Picturebook. Springer Verlag, 1987.

[111] Teresa McBennett Susan Gauch. Rich Hammer, Dals Krams and Dabby
Saltzman. An evaluation of factors affecting rotation tasks in a
three-dimensional graphics system. TR87-002 Dept Comp. Sci., TR87-002,
1987.

[112] K. V. Steiner and R. P. Burton. Hidden volumes: The 4th dimension.
Computer Graphics World, pages 71–74, Feb 1987.

[113] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in interactive
3-d rotation using 2-d control devices. In SIGGRAPH ’88: Proceedings of the
15th annual conference on Computer graphics and interactive techniques,
pages 121–129, New York, NY, USA, 1988. ACM.

[114] Matthew Moore and Jane Wilhelms. Collision detection and response for
computer animation. In SIGGRAPH ’88: Proceedings of the 15th annual
conference on Computer graphics and interactive techniques, pages 289–298,
New York, NY, USA, 1988. ACM.

[115] Robert Burton. Raster algorithms for cartesian hyperspace graphics. Journal
of Imaging Technology, 15(2):89–95, Apt 1989.

160



[116] Henry Fuchs ef al. Pixel-planes 5: A heterogeneous multiprocessor graphics
system using processor-enhanced memories. In SIGGRAPH ’89 Proc., pages
79–88, New York, NY, USA, 1989. ACM.

[117] A. S. Glassner. How to derive a spectrum from an rgb triplet. IEEE
Computer Graphics and Applications, 9(4):95-99, July 1989.

[118] Ivars Peterson. A different dimension. Science News, 135(21).

[119] T. F. Banchoff. Beyond the third dimension: Geometry, computer graphics,
and higher dimensions. Scientific American, 1990.

[120] David Baraff. Curved surfaces and coherence for nonpenetrating rigid body
simulation. In SIGGRAPH ’90 Proc., pages 19–28, New York, 1990. ACM.

[121] David Ellsworth. Howard Good and Brice Tcbbs. Distributing display lists on
a multicomputer. In Proc. 1990 Symp Interactive 3D Graphics, 1990.

[122] S. K. Feiner and Clifford Beshers. Visualizing n-dimensional virtual worlds
with n-vision. SIGGRAPH Comput. Graph., 24(2):37–38, 1990.

[123] Paul Haeberli and Kurt Akely. The accumulation buffer: Hardware support
for high-quality rendering. In SIGGRAPH ’90 Proc., pages 309–318, New
York, 1990. ACM.

[124] Pat Hanrahan and Paul Hacberli. Direct wysiwyg painting and texturing on
3d shapes. In SIGGRAPH ’90 Proc., pages 215–224, New York, 1990. ACM.

[125] A. J. Hanson, P. A. Heng, and B. C. Kaplan. Techniques for visualizing
fermat’s last theorem: A case study. In Proceedings of Visualization 1990,
pages 97–106. IEEE Computer Society Press,San Francisco, 1990.

[126] A. J. Hanson, P. A. Heng, and B. C. Kaplan. Visualizing fermat’s last
theorem, 1990. 3:37 minute video animation.

[127] P.-K. Hsiung, R.H. Thibadeau, and M. Wu. T-buffer: Fast visualization of
relativistic effects in spacetime. In Computer Graphics,1990 Symposium on
Interactive 3D Graphics, volume 24(2), pages 83–88. SIGGRAPH, ACM, 1990.

[128] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. In SIGGRAPH ’90 Proc., volume 24, pages 63–70, New
York, 1990. ACM.

[129] E. Bedford and J. Smillie. Polynomial diffeomorphisms of c2: Currents,
equilibrium measure and hyperbolicity. Inventiones Mathematicae, 103:69–99,
1991.

[130] Edward Adelson William Freeman and David Heegar. Motion without
movement. In Proc. 1991 Symp Interactive 3D Graphics, pages 27–30, 1991.

161



[131] C. M. Hoffmann and J. Zhou. Some techniques for visualizing surfaces in
four-dimensional space. Computer Aided Design, 23:83–91, 1991.

[132] S. Hollasch. Four-space visualization of 4d objects. Masters thesis, Arizona
State University, 1991.

[133] Don Mitchell. Spectrally optimal sampling for distribution ray tracing. In
SIGGRAPH ’91 Proc., pages 157–164, New York, NY, USA, 1991. ACM.

[134] Jarke van Wijk. Spot noise-texture synthesis for data visualization. In
SIGGRAPH ’91 PROC., pages 309–318, New York, NY, USA, 1991. ACM.

[135] J.E. Fornaess and N. Sibony. Complex henon mappings in c2 and fatou
bieberbach domains. Duke Mathematical J., 65:345–380, 1992.

[136] A. J. Hanson and P. A. Heng. Four-dimensional views of 3d scalar fields. In In
Proceedings of Visualization 1992, pages 84– 91. IEEE Computer Society
Press, 1992.

[137] Andrew J. Hanson. Video animation of knotted spheres in four dimensions,
1993.

[138] Robert A. Cross and Andrew J. Hanson. Virtual reality performance for
virtual geometry. In VIS ’94: Proceedings of the conference on Visualization
’94, pages 156–163, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[139] Rodney G. Downey and Michael R. Fellows. Parameterized computational
feasibility. In Feasible Mathematics II, pages 219–244. Birkhauser, 1994.

[140] K. L. Duffin and W. A. Barrett. Spiders: a new user interface for rotation and
visualization of n-dimensional point sets. In In Proceedings of Visualization
1994, pages 205–211. IEEE Computer Society Press, 1994.

[141] A.J. Hanson. A construction for computer visualization of certain complex
curves. Notices of the Amer.Math.Soc., 41(9):1156–1163, November and
December 1994.

[142] R. A. Cross and A. J. Hanson. Virtual reality performance for virtual
geometry. In In Proceedings of Visualization 1994, pages 156–163. IEEE
Computer Society Press, 1994.

[143] Paul S. Heckbert and Ed Andrew Glassner. Graphics gems IV. Academic
Press.

[144] A. J. Hanson and H. Ma. Quaternion frame approach to streamline
visualization. IEEE Trans. on Visualiz. and Comp. Graphics, 1(2):164–174,
June 1995.

162



[145] A. J. Hanson. Rotations for n-dimensional graphics, chapter In Alan Paeth,
editor,Graphics Gems V, pages 55–64. Academic Press, Cambridge, MA, 1995.

[146] A. J. Hanson and H. Ma. Space walking. In In Proceedings of Visualization,
pages 126–133. IEEE Computer Society Press, 1995.

[147] W. Chen. Y. Zhou and Z. Tang. An elaborate ambiguity detection method for
constructing isosurfaces within tetrahedral meshes. Computers & Graphics,
19:355–364, 1995.

[148] Moving coordinate frames for representation and visualization in four
dimensions. Computers & Graphics, 20(6”, pages = 905-919, year = 1996,
note = Medical Visualization, issn = 0097-8493, doi = DOI:
10.1016/S0097-8493(96)00060-X, url =
http://www.sciencedirect.com/science/article/B6TYG-3VTK1P3-
F/2/0f525fdc80b03fbdb60ade3c08120960, author = R. Egli and C. Petit and
N.F. Stewart).

[149] Kenneth Krane. Modern Physics. John Wiley & Sons, 1996.

[150] Chris Weigle and David C. Banks. Complex-valued contour meshing. In In
Proceedings of Visualization ‘96, pages 173–180. IEEE Computer Society
Press, 1996.

[151] David C. Banks. Screen-parallel calculation of surface intersections, 1997.

[152] A. J. Hanson and E.Wernert. Constrained 3d navigation with 2d controllers.
In Proceedings of Visualization, pages 175–182. IEEE Computer Society Press,
1997.

[153] C. M. Savage and Antony C. Searle. Visualizing special relativity.
http://www.anu.edu.au/Physics/Searle/, 1997. on-line video.

[154] Antony C. Searle. Backlight ray tracer, 1997.
http://www.anu.edu.au/Physics/Searle/.

[155] Antony C. Searle. Seeing relativity, 1997.
http://www.anu.edu.au/Physics/Searle/.

[156] Daniel Weiskopf. Institute for visualization and interactive systems, virtual
reality software download, 1997. http://wwwvis.informatik.uni-
stuttgart.de/eng/research/fields/current/relativity/specialrelativity/vr/vr-
eng.html.

[157] C. Bajaj, V. Pascucci, G. Rabbiolo, and D. Schikore. Hypervolume
visualization: a challenge in simplicity. In In Proceedings of 1998 Symposium
on Volume Visualization, pages 95–102. ACM Press, 1998.

163



[158] Y.F. Gong et al. Recovering strange attractors from noisy interspike intervals
of neuronal firings. Physics Letters A, 258:253–262, 1999.

[159] A. J. Hanson. Constrained optimal framings of curves and surfaces using
quaternion gauss maps. In Proceedings of Visualization, pages 375–382. IEEE
Computer Society Press, 1998.

[160] Steve A. Hill, Jonathan C. Roberts, Local Cell Tilers, England Uk, and
England Uk. Generating surface geometry in higher dimensions using local
cell tilers, 1998.

[161] A. Johnson. Ray tracing the complex henon map. Technical report, Univ. of
Kansas, 1998.

[162] R. Rau, D. Weiskopf, and H. Ruder. Special relativity in virtual reality,
mathematical visualization. In K. Polthier H.-C. Hege, editor, Visualization
and Mathematics, pages 269–279. Springer-Verlag, 1998.

[163] C.M. Savage and A.C. Searle. Visualizing special relativity, 1998.

[164] Chris Weigle and David C. Banks. Extracting iso-valued features in
4-dimensional scalar fields. Volume Visualization and Graphics, IEEE
Symposium on, 0:103–110, 1998.

[165] L. Cao. Coexisting attracting basins in complex holomorphic dynamics.
Technical report, Univ. of Kansas, 1999. Dept. of Mathematics.

[166] Ulrike Stege Rodney G. Downey, Michael R. Fellows. Computational
tractability: The view from mars. In Bulletin of the European Association for
Theoretical Computer Science, volume 69, pages 73–97),, 1999.

[167] Bruce Edmonds. The Evolution of Complexity, chapter What is
Complexity?-The Philosophy of Complexity Per Se With Application to Some
Examples in Evolution. Kluwer Academic Publishers, 1999.

[168] Michael D’Zmura, Phillipe Colantoni, and Gregory Seyranian. Virtual
environments with four or more spatial dimensions. Presence, 1999.

[169] Jonathan C. Roberts and Steve Hill. Piecewise linear hypersurfaces using the
marching cubes algorithm, 1999.

[170] D. Weiskopf. A texture mapping approach for the visualization of special
relativity. In H. Hagen A. Varshney, C.M. Wittenbrink, editor, IEEE
Visualization ’99 Late Breaking Hot Topics, pages 41–44. ACM Press, October
1999.

[171] D. Weiskopf. An immersive virtual environment for special relativity.
Technical Report SFB 382 - Report 108, University of Tbingen, January 1999.

164



[172] Eric A. Wernert and Andrew J. Hanson. A framework for assisted exploration
with collaboration. In In Proceedings of the IEEE Conference on
Visualization, pages 241–248. IEEE Computer Society Press, 1999.

[173] R.Wenger P. Bhaniramka and R. Crawfis. Isosurfacing in higher dimensions.
In Proceedings of Visualization, pages 267–273. IEEE Computer Society Press,
2000.

[174] Michael D’Zmura, Philippe Colantoni, and Gregory D. Seyranian.
Visualization of events from arbitrary spacetime perspectives. volume 3960(1),
pages 35–40. SPIE, 2000.

[175] S. Fang and H. Chen. Hardware accelerated voxelization. Computers &
Graphics, 24(3):433–442, 2000.

[176] J.R. Miller E.A. Gavosto and J. Sheu. Immersive 4d visualization of complex
dynamics. In Immersive 4D Visualization of Complex Dynamics,” Proc.
Workshop New Paradigms in Information Visualization and Manipulation
(NPIV 98), pages 62–64. ACM, 2000.

[177] Penny Rheingans and Marie Desjardins. Visualizing high-dimensional
predictive model quality. In In Proceedings of IEEE Visualization 2000, pages
493–496, 2000.

[178] A. Tufaile and J.C. Sartorelli. Hnon-like attractor in air bubble formation.
Physics Letters A, 275:211–217, 2000.

[179] Daniel Weiskopf. daniel weiskopf - homepage, 2000.
http://wwwvis.informatik.uni-stuttgart.de/ weiskopf/.

[180] D. Weiskopf, D. Kobras, and H. Ruder. An image-based approach to special
relativistic rendering. Technical Report SFB 382 - Report 145, University of
Tbingen, March 2000.

[181] D. Weiskopf, D. Kobras, and H.Ruder. Real-world relativity: Image-based
special relativistic visualization. In IEEE Visualization 2000 Conference
Proceedings, pages 445–448, October 2000.

[182] D. Weiskopf and M. Ansorg. Visualization of the general relativistic rigidly
rotating disk of dust. Annalen der Physik, 9 (2000) Spec. Issue:179–185, 2000.

[183] D. Weiskopf, U. Kraus, and H. Ruder. Illumination and acceleration in the
visualization of special relativity: A comment on fast rendering of relativistic
objects. The Journal of Visualization and Computer Animation,
11(4):185–195, 2000.

[184] D. Weiskopf. An immersive virtual environment for special relativity. In
WSCG Conference Proceedings, V. Skala (Ed), pages 337–344. University of
West Bohemia, Pilsen, February 2000.

165



[185] D. Weiskopf. Fast visualization of special relativistic effects on geometry and
illumination. In R. van Liere W. de Leeuw, editor, Proceedings of the
EG/IEEE TCVG Symposium on Visualization, pages 219–228. Springer, 2000.

[186] D. Weiskopf. Four-dimensional non-linear ray tracing as a visualization tool
for gravitational physics. In A. Varshney T. Ertl, B. Hamann, editor, IEEE
Visualization 2000 Proceedings, pages 445–448. ACM Press, 2000.

[187] D. Weiskopf. Non-linear ray tracing as a visualization tool for gravitational
physics. In Proceedings of the IEEE Visualization 2000 Conference, pages
445–448, 2000.

[188] H. Ruder D. Weiskopf, D. Kobras. Real-world relativity: Image-based special
relativistic visualization. In IEEE Visualization 2000 Proceedings, T. Ertl, B.
Hamann, A. Varshney (eds.), pages 303–310. ACM Press, October 2000.

[189] J. Diepstraten, D.Weiskopf, and T. Ertl. Minkrelvis v0.2b software package,
2001. http://www.vis.uni-stuttgart.de/relativity/minkowski/.

[190] M. D’Zmura, P. Colantoni, and G. Seyranian. Virtual environments with four
or more spatial dimensions. Presence 9, pages 616–631, 2001.

[191] C. Everitt. Interactive order-independent transparency, 2001.

[192] A. J. Hanson and D. Weiskopf. Course 15: Visualizing relativity. In
SIGGRAPH 2001 Tutorials. ACM Press, 2001.

[193] D. Kobras, D. Weiskopf, and H. Ruder. Image-based rendering and general
relativity. In WSCG Conference Proceedings, V. Skala (ed.), pages 130–137,
February 2001.

[194] M. J. Kligard E. Lindholm and H. Moreton. A user-programmable vertex
engine. In SIGGRAPH 2001, pages 149–158.

[195] Alex Pang. Visualizing uncertainty in geo-spatial data. In In Proceedings of
the Workshop on the Intersections between Geospatial Information and
Information Technology, 2001.

[196] S. Tzvetkov K. Proudfoot, W. R. Mark and P. Hanrahan. A real-time
procedural shading system for programmable graphics hardware. In
SIGGRAPH 2001, pages 159–170.

[197] Daniel Weiskopf. Visualization of Four-Dimensional Spacetimes. Ph.D.
dissertation, University of Tübingen, 2001.
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